数据结构 —— 线索二叉树

我们今天来看看线索二叉树

线索二叉树

线索二叉树(Threaded Binary Tree)是一种特殊的二叉树结构,它是在二叉树的基础上进行改良的数据结构,主要是为了解决二叉树在空指针上的遍历效率问题。其提出的背景主要基于以下几个方面:

  1. 空指针浪费空间:在传统的二叉树中,每个节点都有两个指针分别指向其左孩子和右孩子。对于叶子节点或者缺失孩子的节点,这些指针会指向NULL,这在大规模数据结构中会浪费大量的存储空间,尤其是当树的深度较大时。
  1. 遍历效率问题:在遍历二叉树时(如前序、中序、后序遍历),需要不断地检查节点的左右孩子是否为空,这增加了算法的时间复杂度。特别是在中序遍历中,需要重复地回到上一层节点,以访问右子树,这种回溯操作降低了遍历的效率。

为了解决这些问题,线索二叉树的概念被提出。在线索二叉树中,将那些空的指针(指向NULL的指针)改用来指向某种顺序下的下一个节点(前驱或后继节点),这样就形成了一种链式的结构,使得遍历更加高效。具体来说:

  • 线索化:将空的左指针指向该节点在某种遍历顺序下的前驱节点,将空的右指针指向后继节点。
  • 标志位:为了区分指针是指向孩子节点还是线索(前驱/后继节点),每个节点通常会增加两个标志位,指示左指针和右指针是否为线索。

通过这种方式,线索二叉树可以在不增加额外存储空间的前提下,实现对二叉树的快速遍历,尤其是在频繁进行中序遍历等操作时,能够显著提高效率。

在这里插入图片描述

结构定义

结点类

我们还是首先把结点类创造出来:

// 定义二叉树结点
template<class T>
class BTreeNode
{
public:
    // 构造函数,初始化结点数据、左孩子和右孩子指针
    BTreeNode(T data)
            : _data(data)
            , _leftchild(nullptr)
            , _rightchild(nullptr)
    {

    }

    // 数据
    T _data;
    // 左右孩子指针
    BTreeNode<T>* _leftchild;
    BTreeNode<T>* _rightchild;

    // 线索化标志,用于标记当前结点的左指针是否为线索
    int lflag = 0;
    // 线索化标志,用于标记当前结点的右指针是否为线索
    int rflag = 0;
};

树类

然后我们根据这个结点,创建一个线索二叉树类,这里创建一棵二叉搜索树:

// 定义线索二叉树
template<class T>
class ThreadBTree
{
public:
    // 构造函数,初始化根结点
    ThreadBTree(T data)
    {
        _root = new BTreeNode<T>(data);
    }

    // 插入结点到二叉树中
    void _Insert(BTreeNode<T>*& root, T data)
    {
        if (root == nullptr)
        {
            root = new BTreeNode<T>(data);
            return;
        }

        // 根据数据大小,将结点插入到左子树或右子树
        if (root->_data< data)
        {
            _Insert(root->_rightchild, data);
        }
        else if (root->_data > data)
        {
            _Insert(root->_leftchild, data);
        }
    }

    // 外部调用接口,插入结点到二叉树中
    void Insert(T data)
    {
        _Insert(_root, data);
    }

    // 中序遍历二叉树
    void _Inorder(BTreeNode<T>* root)
    {
        if (root == nullptr)
        {
            return;
        }

        _Inorder(root->_leftchild);
        //操作
        std::cout << root ->_data << " ";
        _Inorder(root->_rightchild);
    }

    // 外部调用接口,中序遍历二叉树
    void Inorder()
    {
        _Inorder(_root);
    }


private:
    BTreeNode<T>* _root; // 根结点指针
};

这样我们建立好了一棵二叉搜索树,我们插入几个数试试:

#include "ThreadBTree.h"

int main()
{
    ThreadBTree<int> bt(23);

    bt.Insert(44);
    bt.Insert(1);
    bt.Insert(2);
    bt.Insert(29);
    bt.Insert(7);

    bt.Inorder();
    std::cout << std::endl;

    return 0;
}

在这里插入图片描述
构建了像这样的一棵搜索二叉树:
在这里插入图片描述

线索化

现在我们可以对这棵二叉树进行线索化,我们先来看看这棵树有多少的空指针域:
在这里插入图片描述我们这里采用模拟中序,然后线索化,我们定义一个prve指针,记录当前上一步到哪里

但是这里注意,一开始prve为空,可以当做第一个结点的NULL
在这里插入图片描述然后定义一个cur指针,从根节点开始:
在这里插入图片描述
然后cur到了1这里:
在这里插入图片描述
然后prve开始记录cur路径,当cur到2的时候,prve到1
在这里插入图片描述这个时候cur左孩子为空,修改cur左孩子标志位,标志此时左孩子担任线索,并指向prve
在这里插入图片描述依次类推,2和7也是这样,到7这里,左孩子也可以作为线索:
在这里插入图片描述
这样我们可以写出前半段代码:

	// 线索化处理函数
    void vist(BTreeNode<T>* cur)
    {
        // 如果当前结点的左孩子为空,将当前结点的左指针指向前一个结点,并设置线索化标志
        if (cur->_leftchild == nullptr)
        {
            cur->_leftchild = _prve;
            cur->lflag = 1;
       }
        // 更新前一个结点为当前结点
        _prve = cur;
    }

接下来,cur会走到23,prve会走到7:
在这里插入图片描述这个时候cur是prve的后继
在这里插入图片描述
我们写出后半段的代码:

		// 线索化处理函数
    void vist(BTreeNode<T>* cur)
    {
        // 如果当前结点的左孩子为空,将当前结点的左指针指向前一个结点,并设置线索化标志
        if (cur->_leftchild == nullptr)
        {
            cur->_leftchild = _prve;
            cur->lflag = 1;
        }

        // 如果前一个结点的右孩子为空,将前一个结点的右指针指向当前结点,并设置线索化标志
        if (_prve != nullptr && _prve->_rightchild == nullptr)
        {
            _prve->_rightchild = cur;
            _prve->rflag = 1;
        }

        // 更新前一个结点为当前结点
        _prve = cur;
    }

我们改造一下线索二叉树类:

#pragma once
#include<iostream>

// 定义二叉树结点
template<class T>
class BTreeNode
{
public:
    // 构造函数,初始化结点数据、左孩子和右孩子指针
    BTreeNode(T data)
            : _data(data)
            , _leftchild(nullptr)
            , _rightchild(nullptr)
    {

    }

    // 数据
    T _data;
    // 左右孩子指针
    BTreeNode<T>* _leftchild;
    BTreeNode<T>* _rightchild;

    // 线索化标志,用于标记当前结点的左指针是否为线索
    int lflag = 0;
    // 线索化标志,用于标记当前结点的右指针是否为线索
    int rflag = 0;
};

// 定义线索二叉树
template<class T>
class ThreadBTree
{
public:
    // 构造函数,初始化根结点
    ThreadBTree(T data)
    {
        _root = new BTreeNode<T>(data);
    }

    // 插入结点到二叉树中
    void _Insert(BTreeNode<T>*& root, T data)
    {
        if (root == nullptr)
        {
            root = new BTreeNode<T>(data);
            return;
        }

        // 根据数据大小,将结点插入到左子树或右子树
        if (root->_data< data)
        {
            _Insert(root->_rightchild, data);
        }
        else if (root->_data > data)
        {
            _Insert(root->_leftchild, data);
        }
    }

    // 外部调用接口,插入结点到二叉树中
    void Insert(T data)
    {
        _Insert(_root, data);
    }

    // 中序遍历二叉树
    void _Inorder(BTreeNode<T>* root)
    {
        if (root == nullptr)
        {
            return;
        }

        _Inorder(root->_leftchild);
        //vist(root); // 访问当前结点,进行线索化处理
        std::cout << root ->_data << " ";
        _Inorder(root->_rightchild);
    }

    // 外部调用接口,中序遍历二叉树
    void Inorder()
    {
        _Inorder(_root);
    }

    // 线索化处理函数
    void vist(BTreeNode<T>* cur)
    {
        // 如果当前结点的左孩子为空,将当前结点的左指针指向前一个结点,并设置线索化标志
        if (cur->_leftchild == nullptr)
        {
            cur->_leftchild = _prve;
            cur->lflag = 1;
        }

        // 如果前一个结点的右孩子为空,将前一个结点的右指针指向当前结点,并设置线索化标志
        if (_prve != nullptr && _prve->_rightchild == nullptr)
        {
            _prve->_rightchild = cur;
            _prve->rflag = 1;
        }

        // 更新前一个结点为当前结点
        _prve = cur;
    }

private:
    BTreeNode<T>* _root; // 根结点指针
    BTreeNode<T>* _prve = nullptr; // 用于记录中序遍历过程中的前一个结点
    BTreeNode<T>* _cur = _root; // 当前遍历到的结点,默认为根结点
};

找线索二叉树的后继

现在我们有了一棵线索化的二叉树,现在我们想给定一个结点,找它的后继结点:
在这里插入图片描述
如果给定结点的右子树只有一个结点,则后继结点就是这个结点,但是如果右节点的左子树有结点
在这里插入图片描述如果没有结点,则右孩子为线索,直接返回线索:
在这里插入图片描述

    BTreeNode<T>* FisrtNode(BTreeNode<T>* node)
    {
       // 循环向下遍历,直到找到一个左标志为1的节点(表示左孩子是线	索,指向实际节点)
	    while (node->lflag == 0)
	    {
	        node = node->_leftchild;
	    }
    	return node; // 返回第一个实际节点
    }

    BTreeNode<T>* NextNode(BTreeNode<T>* node)
    {
        if (node->rflag == 0)
            return FisrtNode(node->_rightchild);
        else if (node->rflag == 1)
            return node->_rightchild;
    }

    BTreeNode<T>* FindNode(T data)
    {
       return  _FindNode(_root, data);
    }

    BTreeNode<T>* _FindNode(BTreeNode<T>* root, T data)
    {
        if (root->_data == data)
        {
            return root;
        }

        if (root->_data < data)
        {
            return _FindNode(root->_rightchild, data);
        }
        else if (root->_data > data)
        {
            return _FindNode(root->_leftchild, data);
        }

        return nullptr;
    }

找线索二叉树的前驱

找前驱和找后继的逻辑差不多:

    BTreeNode<T>* FisrtNode2(BTreeNode<T>* node)
    {
        while (node->rflag == 0)
        {
            node = node->_rightchild;
        }

        return node;
    }

    BTreeNode<T>* NextNode2(BTreeNode<T>* node)
    {
        if (node->lflag == 0)
            return FisrtNode(node->_leftchild);
        else if (node->lflag == 1)
            return node->_leftchild;
    }

我们来试试:

#include "ThreadBTree.h"

int main()
{
    ThreadBTree<int> bt(23);

    bt.Insert(44);
    bt.Insert(1);
    bt.Insert(2);
    bt.Insert(29);
    bt.Insert(7);

    bt.Inorder();

    BTreeNode<int>* node = bt.FindNode(7);

    BTreeNode<int>* next_node = bt.NextNode(node);

    std::cout << "后继结点为:" << next_node->_data << std::endl;

    BTreeNode<int>* prve_node = bt.NextNode2(node);

    std::cout << "前驱结点为:" << prve_node->_data << std::endl;

    return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值