R语言armasubsets使用及报错问题处理

时间序列分析

在时间序列分析的建模过程中,我们常用armasubsets给我们的模型进行定阶,优化。

armasubsets() in TSA package,判别准则BIC。

armasubsets使用

res = armasubsets(X,nar = 14,nma = 14,ar.method = "ols")
#X为待拟合的时间序列,nar为AR的最大阶数,nma为MA的最大阶数
#ar.method = "ols",表示AR部分的拟合方法是最小二乘法

plot(res)    

plot图采用是数据为某支股票的收盘价差分序列

armasubsets报错问题及解决办法

 关于armasubsets的报错问题,我们会遇到两种类型。

第一种问题,就是我们安装TSA包之后,调用函数时系统提示版本过低,如图:

 当出现这种问题时,使用者可以不用理会,直接使用armasubsets函数即可,通常情况下是不影响armasubsets函数正常使用的。(读者如果用install.packages("TSA")无法安装的话,可以采用Package Archive File (.zip;.tar.gz)形式安装)

第二种问题,我们使用armasubsets()函数之后,系统报错。

Reordering variables and trying again:
Warning message:
In leaps.setup(x, y, wt = wt, nbest = nbest, nvmax = nvmax, force.in = force.in,  :
  1  linear dependencies found

 解决方法:出现这种问题,我们通常检查一下我们的数据是否为一个时间序列,不是的话请将数据转化为时间序列。如果尝试过后还是报错,我们可以将AR、MA的最大阶数(即nar=,nma=)数值调小,再进行尝试。

补充

以上所遇到的问题,以及解决的方法都是自己身边朋友们出现的问题,以及做出以上修正后就可以正常运行的情况。如您遇到与上述问题不符的情况,欢迎私信,一起讨论,一起进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值