6.4 ARMA模型辨识
可以逐个从低阶模型尝试,
\(p+q\)越小越好,
找到AIC最小的选择,
用精确最大似然或者条件最大似然方法估计参数。
对残差进行白噪声检验以验证模型是否充分。
R的forecast包提供了一个auto.arima()函数,
可以自动进行模型选择。
TSA包提供了一个armasubsets()函数用于模型选择。
Tsay和Tiao(1984)提出了一个对ARMA定阶的辅助工具EACF,
其结果可以用与\((p,q)\)有关的二维表格表示,
结果包含由字母“O”组成的三角形,
锐角顶点在\((p,q)\)位置。如
\[
\begin{array}{*9c}
& \text{MA} \\
\text{AR} & 0 & 1 & 2 & 3 & 4 &5 & 6 & 7 \\
\hline
0 & X & X & X & X & X & X & X & X \\
1 & X & O & O & O & O & O & O & O \\
2 & * & X & O & O & O & O & O & O \\
3 & * & * & X & O & O & O & O & O \\
4 & * & * & * & X & O