eacf怎么定阶_6 ARMA模型 | 金融时间序列分析讲义

本文介绍了如何使用EACF方法和ARMA模型来分析金融时间序列,通过3M公司股票月对数收益率的数据实例展示了ARIMA模型的自动选择过程,包括使用forecast包的auto.arima()函数以及TSA包的armasubsets()函数。
摘要由CSDN通过智能技术生成

6.4 ARMA模型辨识

可以逐个从低阶模型尝试,

\(p+q\)越小越好,

找到AIC最小的选择,

用精确最大似然或者条件最大似然方法估计参数。

对残差进行白噪声检验以验证模型是否充分。

R的forecast包提供了一个auto.arima()函数,

可以自动进行模型选择。

TSA包提供了一个armasubsets()函数用于模型选择。

Tsay和Tiao(1984)提出了一个对ARMA定阶的辅助工具EACF,

其结果可以用与\((p,q)\)有关的二维表格表示,

结果包含由字母“O”组成的三角形,

锐角顶点在\((p,q)\)位置。如

\[

\begin{array}{*9c}

& \text{MA} \\

\text{AR} & 0 & 1 & 2 & 3 & 4 &5 & 6 & 7 \\

\hline

0 & X & X & X & X & X & X & X & X \\

1 & X & O & O & O & O & O & O & O \\

2 & * & X & O & O & O & O & O & O \\

3 & * & * & X & O & O & O & O & O \\

4 & * & * & * & X & O

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值