一、彩色基础
色谱可分为6个宽的区域:紫色、蓝色、绿色、黄色、橙色和红色。当观察全彩色时,色谱末尾的颜色不是突变的,而是每种颜色混合平滑地过渡到下一种颜色的。
用来描述彩色光源质量的3个基本量是辐射、光强和亮度。人眼中的600~700万个锥状细胞可分为3个主要的感知类别,分别对应于红色、绿色和蓝色。
色调与饱和度一起称为色度,因此,颜色可用其亮度和色度来表征。形成任何特殊彩色的红、绿、蓝的数量称为三色值,并分别表示为X,Y和Z。这样,一种颜色就可由其三色值系数定义为
从以上公式可得:x +y+z=1
确定颜色的另一种方法是使用CIE色度图(见图6.5),该图以x(红)和y(绿)的函数表示颜色的组成。
二、彩色模型
彩色模型(也称为彩色空间或彩色系统)的目的是在某些标准下用通常可以接受的方式方便地对彩色加以说明。
1、RGB彩色模型
在RGB模型中,每种颜色出现在红、绿、蓝的原色光谱分量中。该模型基于笛卡儿坐标系。在RGB空间中,用于表示每个像素的比特数称为像素深度。
2、CMY和 CMYK彩色模型
大多数在纸上沉积彩色颜料的设备,如彩色打印机和复印机,要求输入CMY数据或在内部进行RGB到CMY的转换。这一转换是使用下面这个简单的操作执行的:
3、HSI彩色模型
HSI(色调、饱和度和强度)彩色模型可在彩色图像中从携带的彩色信息(色调和饱和度)中消去强度分量的影响。
HSI模型是开发基于彩色描述的图像处理算法的理想工具,这种彩色描述对人来说是自然且直观的,毕竟人才是这些算法的开发者和使用者。
可以说RGB 对于图像颜色生成来说是理想的(如用彩色摄像机的图像获取,或在监视器屏幕上显示图像),但在用于颜色描述时则有许多的限制。
从RGB到HSI的彩色转换
给定一幅RGB彩色格式的图像,每个RGB像素的H分量可用下式得到:
饱和度分量又下式给出:
强度分量由下式给出:
从HSI到RGB的彩色转换
RG扇区(0°≤ H<120°):当H的值在该扇区中时,RGB分量由以下公式给出:
GB扇区(120°≤H<240°):如果给定的H值在该扇区中,则首先从H中减去120°,即
RGB分量为:
BR扇区(240°≤ H<360°):最后,如果H的值在该扇区中,则从H中减去240°,即
RGB分量为:
三、伪彩色图像处理
伪彩色(也称为假彩色)图像处理是指基于一种指定的规则对灰度值赋以颜色的处理。
1、灰度分层
灰度分层(有时称为密度分层)和彩色编码技术是伪彩色图像处理的最简单的例子之一。
如果对上图中平面的每一侧赋以不同的颜色,平面上面的任何灰度级的像素将编码成一种彩色。该平面之下的任何像素将编码成另一种颜色。位于平面上的灰度级本身被任意赋以两种彩色。结果是一幅只有两种颜色的图像,其相对应的外观可通过沿灰度轴上下移动这个切割平面来控制。
2、灰度到彩色的变换
对任何输人像素的灰度执行3个独立的变换。然后,将3个变换结果分别送入彩色电视监视器的红、绿、蓝通道。这种方法产生一幅合成图像,该合成图像的彩色内容由变换函数的特性调制。
四、全彩色图像处理基础
全彩色图像处理方法分为两大类。第一类是分别处理每一幅分量图像,然后由分别处理过的分量图像来形成一幅处理过的合成彩色图像。第二类是直接处理彩色像素。
令c代表RGB彩色空间中的一个任意向量:
彩色分量是坐标(x, y)的函数,表示为
为了使每种彩色分量处理和基于向量的处理等同,必须满足两个条件:第一,处理必须对向量和标量都可用;第二,对向量的每一分量的操作对于其他分量必须是独立的。
五、彩色变换
彩色变换主要涉及在单一彩色模型内处理彩色图像的分量。
1、公式
其中f(x, y)是彩色输入图像,g(x, y)是变换后或处理过的彩色输出图像,T是在(x, y)的空间邻域上对f的一个算子。
2、补色
3、彩色分层
对一幅彩色图像分层的最简方法之一是,把某些感兴趣区域之外的彩色映射为不突出的无确定性质的颜色。如果感兴趣的颜色由宽为w、中心在原型(即平均)颜色点并具有分量(a1, a2.…,an,)的立方体(或超立方体,此时n>3)所包围,则必要的一组变换为
如果使用一个圆球体来指定感兴趣的颜色:
4、色调和彩色校正
彩色变换可在多数台式计算机上执行。与数字摄像机、平板扫描仪和喷墨打印机相连,个人计算机就变成了数字暗室,从而允许我们对图像进行色调调整和彩色校正,高级彩色重现系统不需要配备传统的湿式处理(暗室)设备即可进行这些处理。
许多彩色处理系统(CMS)选择的模型是CIE L*a*b*模型,也称为CIELAB(CIE[1978],Robertson[1977)。L*a*b*彩色分量由如下公式给出:
其中
5、直方图处理
六、平滑和锐化
1、彩色图像平滑
在一幅RGB彩色图像中,令S,表示中心位于(x, y)的邻域定义的一组坐标。在该邻域中RGB分量的向量平均值为
我们将该向量的分量视为几幅标量图像,这些标量图像可通过传统的灰度级邻域处理来单独地平滑原RGB图像的每个平面来得到。
2、彩色图像锐化
拉普拉斯方法的图像(尖)锐化处理。从向量分析可知,一个向量的拉普拉斯被定义为一个向量,其分量等于输入向量的各个标量分量的拉普拉斯。在RGB彩色系统中,向量c的拉普拉斯变换为
正如前节所述,它告诉我们可以通过分别计算每一幅分量图像的拉普拉斯来计算全彩色图像的拉普拉斯。
七、基于彩色的图像分割
1、HSI彩色空间的分割
2、RGB向量空间中的分割
令z表示 RGB 空间中的任意一点。如果它们之间的距离小于特定的阈值D。.则称z与a是相似的。z和α间的欧氏距离由下式给出:
推广是形如下式的距离度量:
3、彩色边缘检测
令r,g和b是沿RGB彩色空间的R,G,B轴的单位向量,并定义向量为
令,
和
表示这些向量的点积,如下所示:
记住,R,G和B以及由此而来的g项是x和y的函数。使用这种表示法,可以证明(Di Zenzo[1986) ,c(x, y)的最大变化率方向可以由角度
给出,且在角度0(x, y)方向上点(x, y)处的变化率的值由下式给出: