目录
1.在python中通过以下代码可以防止运行结果出现中文乱码的情况(如画图时)
2.在将excel表格文件中的数据读取出来 ,并将其中的两列数据作为行列坐标用图画出来
3.在Python Console清除运行的控制台数据使用:
1.在python中通过以下代码可以防止运行结果出现中文乱码的情况(如画图时)
## 设置字符集,防止中文乱码
import matplotlib as mpl #画图工具
mpl.rcParams['font.sans-serif']=[u'simHei']
mpl.rcParams['axes.unicode_minus']=False
2.在将excel表格文件中的数据读取出来 ,并将其中的两列数据作为行列坐标用图画出来
#取出表格的每一列
data = pd.read_excel('data.xlsx') #从excel表格中读取数据
row_1 = data.loc[:,'data_row_1'] #将读取到的data数据中的一列取出来
row_1 = np.array(row_1) #将取出来的一列变为ndarray数组
row_2 = data.loc[:,'data_row_2']
row_2 = np.array(row_2,float)
#数据可视化
fig1 = plt.figure(figsize=(8,5)) #图片尺寸
plt.scatter(row_1,row_2) #画散点图
plt.grid() #画网格
plt.title("picture_title") ##图片顶部标题
plt.xlabel("x_label") #图片x轴坐标名称
plt.ylabel("y_label") #图片y轴坐标名称
plt.show() #显示图片
2.1 设置坐标轴显示的刻度及范围
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.pyplot import MultipleLocator #从pyplot导入MultipleLocator类,这个类用于设置刻度间隔
import matplotlib.dates as mdate
#方法一(显示范围由数据决定)
#设置图片坐标轴间隔及范围(由数据自定义的范围)
ax = plt.gca() #表明设置图片的各个轴,plt.gca()表示图片本身
ax.xaxis.set_major_locator(ticker.MultipleLocator(100)) # 设置 x 轴刻度间隔为 100
plt.gcf().autofmt_xdate() #自动旋转日期标记
#方法二(显示范围由手动设置)
#手动定义设置横坐标标签的显示格式,范围及刻度
ax.xaxis.set_major_formatter(mdate.DateFormatter('%Y-%m-%d-%H-%M'))#设置横坐标标签显示的日期格式
plt.xticks(pd.date_range('2018-9-1','2012-11-30',freq='20d')) #设置横坐标日期范围及间隔
3.在Python Console清除运行的控制台数据使用:
-
使用命令
Ctrl+L
或Ctrl+K
,这将清除控制台中的所有输出。 -
在控制台中,使用命令
import os
和os.system('clear')
,这将调用操作系统的清屏命令,清除控制台中的所有输出。
请注意,以上方法仅适用于Python Console中运行的命令和输出,不会清除已经定义的变量和函数等。如果需要清除已经定义的变量和函数等,可以使用del
命令,例如del my_variable
将删除名为my_variable
的变量。