leetcode239.滑动窗口最大值、347.前 K 个高频元素

239.滑动窗口最大值

用暴力方法,遍历一遍的过程中每次从窗口中再找到最大的数值,很明显是O(n × k)的算法

我们也可以用队列

这个队列呢,放进去窗口里的元素,然后随着窗口的移动,队列也一进一出,每次移动之后,队列告诉我们里面的最大值是什么

这个队列应该长这个样子:

class MyQueue {
public:
    void pop(int value) {
    }
    void push(int value) {
    }
    int front() {
        return que.front();
    }
};

每次窗口移动的时候,调用que.pop(滑动窗口中移除元素的数值),que.push(滑动窗口添加元素的数值),然后que.front()就返回我们要的最大值

然后再分析一下,队列里的元素一定是要排序的,而且要最大值放在出队口,要不然怎么知道最大值呢?

但如果把窗口里的元素都放进队列里,窗口移动的时候,队列需要弹出元素

那么问题来了,已经排序之后的队列 怎么能把窗口要移除的元素(这个元素可不一定是最大值)弹出呢

其实队列没有必要维护窗口里的所有元素,只需要维护有可能成为窗口里最大值的元素就可以了,同时保证队列里的元素数值是由大到小的

那么这个维护元素单调递减的队列就叫做单调队列,即单调递减或单调递增的队列。C++中没有直接支持单调队列,需要我们自己来实现一个单调队列

不要以为实现的单调队列就是 对窗口里面的数进行排序,如果排序的话,那和优先级队列又有什么区别了呢

设计单调队列的时候,pop,和push操作要保持如下规则:

pop(value):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
push(value):如果push的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到push元素的数值小于等于队列入口元素的数值为止
保持如上规则,每次窗口移动的时候,只要问que.front()就可以返回当前窗口的最大值

代码如下:

class Solution {
private:
    class MyQueue { //单调队列(从大到小)
    public:
        deque<int> que; // 使用deque来实现单调队列
        // 每次弹出的时候,比较当前要弹出的数值是否等于队列出口元素的数值,如果相等则弹出。
        // 同时pop之前判断队列当前是否为空。
        void pop(int value) {
            if (!que.empty() && value == que.front()) {
                que.pop_front();
            }
        }
        // 如果push的数值大于入口元素的数值,那么就将队列后端的数值弹出,直到push的数值小于等于队列入口元素的数值为止。
        // 这样就保持了队列里的数值是单调从大到小的了。
        void push(int value) {
            while (!que.empty() && value > que.back()) {
                que.pop_back();
            }
            que.push_back(value);

        }
        // 查询当前队列里的最大值 直接返回队列前端也就是front就可以了。
        int front() {
            return que.front();
        }
    };
public:
    vector<int> maxSlidingWindow(vector<int>& nums, int k) {
        MyQueue que;
        vector<int> result;
        for (int i = 0; i < k; i++) { // 先将前k的元素放进队列
            que.push(nums[i]);
        }
        result.push_back(que.front()); // result 记录前k的元素的最大值
        for (int i = k; i < nums.size(); i++) {
            que.pop(nums[i - k]); // 滑动窗口移除最前面元素
            que.push(nums[i]); // 滑动窗口前加入最后面的元素
            result.push_back(que.front()); // 记录对应的最大值
        }
        return result;
    }
};
  • 时间复杂度: O(n)
  • 空间复杂度: O(k)

347.前 K 个高频元素

这道题目主要涉及到如下三块内容:

  • 要统计元素出现频率
  • 对频率排序
  • 找出前K个高频元素

首先统计元素出现的频率,这一类的问题可以使用map来进行统计

然后是对频率进行排序,这里我们可以使用一种 容器适配器就是优先级队列

优先级队列其实就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列

而且优先级队列内部元素是自动依照元素的权值排列。那么它是如何有序排列的呢?

缺省情况下priority_queue利用max-heap(大顶堆)完成对元素的排序,这个大顶堆是以vector为表现形式的complete binary tree(完全二叉树)

为什么不用快排呢, 使用快排要将map转换为vector的结构,然后对整个数组进行排序, 而这种场景下,我们其实只需要维护k个有序的序列就可以了,所以使用优先级队列是最优的

此时要思考一下,是使用小顶堆呢,还是大顶堆?

题目要求前 K 个高频元素,那么就用大顶堆吗?

那么问题来了,定义一个大小为k的大顶堆,在每次移动更新大顶堆的时候,每次弹出都把最大的元素弹出去了,那么怎么保留下来前K个高频元素呢

而且使用大顶堆就要把所有元素都进行排序,那能不能只排序k个元素呢?

所以我们要用小顶堆,因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素

代码如下

class Solution {
public:
    //小顶堆
    class mycomparison{
        public:
            bool operator()(const pair<int, int>& lhs, const pair<int, int>& rhs){
                return lhs.second > rhs.second;
            }
    };
    vector<int> topKFrequent(vector<int>& nums, int k) {
        //统计元素出现的频率
        unordered_map<int, int> map; //map<nums[i],对应出现的次数>
        for(int i = 0; i < nums.size(); i++){
            map[nums[i]]++;
        }

        //对频率排序
        //定义一个小顶堆,大小为k
        priority_queue<pair<int, int>, vector<pair<int, int>>,mycomparison> pri_que;

        //用固定大小为k的小顶堆,扫描所有频率的数值
        for(unordered_map<int, int>::iterator it = map.begin(); it != map.end(); it++){
            pri_que.push(*it);
            if(pri_que.size() > k){ //如果堆的大小大于了k,则队列弹出,保证堆的大小一直为k
                pri_que.pop();
            }
        }

        //找出前k个高频元素,因为小顶堆先弹出的是最小的,所以倒序输出到数组中
        vector<int> result(k);
        for(int i = k - 1; i >= 0; i--){
            result[i] = pri_que.top().first;
            pri_que.pop();
        }
        return result;
    }
};
  • 时间复杂度: O(nlogk)
  • 空间复杂度: O(n)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值