采药
题目描述
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
输入格式
第一行有 2 2 2 个整数 T T T( 1 ≤ T ≤ 1000 1 \le T \le 1000 1≤T≤1000)和 M M M( 1 ≤ M ≤ 100 1 \le M \le 100 1≤M≤100),用一个空格隔开, T T T 代表总共能够用来采药的时间, M M M 代表山洞里的草药的数目。
接下来的 M M M 行每行包括两个在 1 1 1 到 100 100 100 之间(包括 1 1 1 和 100 100 100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
输出格式
输出在规定的时间内可以采到的草药的最大总价值。
样例 #1
样例输入 #1
70 3
71 100
69 1
1 2
样例输出 #1
3
提示
【数据范围】
- 对于 30 % 30\% 30% 的数据, M ≤ 10 M \le 10 M≤10;
- 对于全部的数据, M ≤ 100 M \le 100 M≤100。
思路
该题类似于背包问题,M颗药草T时间,如果选择放入一颗时间为t的药草,则可以类似M-1课药草,T-t的时间的问题,然后以此类推
代码
#include<iostream>
using namespace std;
int n, m;
int t[101], v[101];
int ves[101][1001];
int main()
{
cin >> m >> n;
for (int i = 1;i <= n;i++)
{
cin >> t[i] >> v[i];
}
for (int i = 1;i <= n;i++)
{
for (int j = 0;j <= m;j++)
{
if (t[i] > j)
{
ves[i][j] = ves[i - 1][j];
}
else
{
ves[i][j] = ves[i - 1][j] > (ves[i - 1][j - t[i]] + v[i]) ? ves[i - 1][j] : (ves[i - 1][j - t[i]] + v[i]);
}
}
}
cout << ves[n][m];
return 0;
}
最长上升子序列
题目描述
这是一个简单的动规板子题。
给出一个由 n ( n ≤ 5000 ) n(n\le 5000) n(n≤5000) 个不超过 1 0 6 10^6 106 的正整数组成的序列。请输出这个序列的最长上升子序列的长度。
最长上升子序列是指,从原序列中按顺序取出一些数字排在一起,这些数字是逐渐增大的。
输入格式
第一行,一个整数 n n n,表示序列长度。
第二行有 n n n 个整数,表示这个序列。
输出格式
一个整数表示答案。
样例 #1
样例输入 #1
6
1 2 4 1 3 4
样例输出 #1
4
思路
先用数组存储,再开一个等空间的数组存储第n个数之前有多少个数小于自己的然后加一,利用动态规划,如果初始为1,如果第n个数比第n-1个数大则数组值加1,如果小于n-1则找到最近的一个小于他的数,然后加1.
#include<iostream>
#include<algorithm>
using namespace std;
int M[5001];
int main()
{
int n;
cin >> n;
int arr[5001];
for (int i = 1;i <= n;i++)
{
cin >> arr[i];
}
M[1] = 1;
for (int i = 2;i <= n;i++)
{
int max = 1;
for (int j = i - 1;j >= 1;j--)
{
if (arr[i] > arr[j])
{
max = max > (M[j] + 1) ? max : (M[j] + 1);
}
}
M[i] = max;
}
sort(M + 1, M + n + 1);
cout << M[n];
return 0;
}
最大子段和
题目描述
给出一个长度为 n n n 的序列 a a a,选出其中连续且非空的一段使得这段和最大。
输入格式
第一行是一个整数,表示序列的长度 n n n。
第二行有 n n n 个整数,第 i i i 个整数表示序列的第 i i i 个数字 a i a_i ai。
输出格式
输出一行一个整数表示答案。
样例 #1
样例输入 #1
7
2 -4 3 -1 2 -4 3
样例输出 #1
4
提示
样例 1 解释
选取 [ 3 , 5 ] [3, 5] [3,5] 子段 { 3 , − 1 , 2 } \{3, -1, 2\} {3,−1,2},其和为 4 4 4。
思路
用数组存储前n个数最大的和,如果前n-1的和大于0则数组n的值为第n个数的值加上前n-1个数的最大和。
代码
#include<iostream>
#include<algorithm>
using namespace std;
int n;
int arr[200000];
int m[200000];
int main()
{
cin >> n;
for (int i = 0;i < n;i++)
{
cin >> arr[i];
}
m[0] = arr[0];
for (int i = 1;i < n;i++)
{
m[i] = m[i - 1] > 0 ? (m[i - 1] + arr[i]) : arr[i];
}
sort(m, m + n);
cout << m[n - 1];
return 0;
}
LCS
题面翻译
题目描述:
给定一个字符串 s s s 和一个字符串 t t t ,输出 s s s 和 t t t 的最长公共子序列。
输入格式:
两行,第一行输入 s s s ,第二行输入 t t t 。
输出格式:
输出 s s s 和 t t t 的最长公共子序列。如果有多种答案,输出任何一个都可以。
说明/提示:
数据保证 s s s 和 t t t 仅含英文小写字母,并且 s s s 和 t t t 的长度小于等于3000。
题目描述
文字列 $ s $ および $ t $ が与えられます。 $ s $ の部分列かつ $ t $ の部分列であるような文字列のうち、最長のものをひとつ求めてください。
输入格式
入力は以下の形式で標準入力から与えられる。
$ s $ $ t $
输出格式
$ s $ の部分列かつ $ t $ の部分列であるような文字列のうち、最長のものをひとつ出力せよ。 答えが複数ある場合、どれを出力してもよい。
样例 #1
样例输入 #1
axyb
abyxb
样例输出 #1
axb
样例 #2
样例输入 #2
aa
xayaz
样例输出 #2
aa
样例 #3
样例输入 #3
a
z
样例输出 #3
样例 #4
样例输入 #4
abracadabra
avadakedavra
样例输出 #4
aaadara
思路
利用LSC算法先求出对应二维数组,再逆序遍历找到相应的值
代码
#include<iostream>
#include<string>
#include<stack>
using namespace std;
string s1;
string s2;
int arr[3001][3001];
int c[3001][3001];
int max(int x1, int y1, int x2,int y2)
{
if (arr[x1][y1] >= arr[x2][y2])
{
return arr[x1][y1];
}
else
{
return arr[x2][y2];
}
}
void LCS(int i, int j)
{
if (i == 0 || j == 0)
{
return;
}
else
{
if (s1[i - 1] == s2[j - 1])
{
LCS(i - 1, j - 1);
cout << s1[i - 1];
}
else if(arr[i][j-1]>arr[i-1][j])
{
LCS(i, j - 1);
}
else
{
LCS(i - 1, j);
}
}
}
int main()
{
cin >> s1 >> s2;
for (int i = 0;i < s1.length();i++)
{
for (int j = 0;j < s2.length();j++)
{
if (s1[i] == s2[j])
{
arr[i + 1][j + 1] = arr[i][j] + 1;
}
else
{
arr[i + 1][j + 1] = max(i + 1, j, i, j + 1);
}
}
}
LCS(s1.length(), s2.length());
return 0;
}