构造(Constructive Algorithms)是算法竞赛中常见的一类问题,要求选手通过某种规则或策略构造出满足特定条件的解。
这类问题通常没有固定的解法,而是需要选手发挥创造力,设计出符合要求的构造方法。
下面介绍构造问题的特点、常见类型、解题思路以及一些经典例题。
1. 构造问题的特点
- 目标明确:构造问题通常要求构造一个满足特定条件的对象(如数组、图、字符串等)。
- 多样性:构造方法不唯一,可能存在多种满足条件的解。
- 创造性:需要选手发挥创造力,设计出符合要求的构造方法。
- 验证简单:构造出的解通常易于验证是否满足条件。
2. 构造问题的常见类型
(1)数组构造
- 问题描述:构造一个满足特定条件的数组(如元素和、元素关系等)。
- 示例:
-
- 构造一个长度为 n 的数组,使得所有子数组的和都不为零。
- 构造一个排列,使得相邻元素的差的绝对值构成一个排列。
(2)图构造
- 问题描述:构造一个满足特定条件的图(如度数、连通性、路径等)。
- 示例:
-
- 构造一个无向图,使得每个顶点的度数恰好为 (k)。
- 构造一个树,使得某两个顶点之间的路径长度最大。
(3)字符串构造
- 问题描述:构造一个满足特定条件的字符串(如字符频率、子串性质等)。
- 示例:
-
- 构造一个由
0
和1
组成的字符串,使得没有两个相邻的字符相同。 - 构造一个字符串,使得所有长度为 (k) 的子串都是唯一的。
- 构造一个由
(4)数学构造
- 问题描述:构造一个满足特定数学性质的对象(如数列、函数等)。
- 示例:
-
- 构造一个数列,使得前 (n) 项的和为 (S)。
- 构造一个函数,使得满足某种递推关系。
3. 构造问题的常见解题思路
(1)观察规律
- 通过观察小规模的例子,寻找规律或模式。
- 尝试将小规模的解推广到大规模。
(2)逆向思维
- 从目标出发,逆向推导构造方法。
- 例如,如果目标是构造一个排列,使得相邻元素的差的绝对值构成一个排列,可以尝试从差值的排列出发构造原排列。
(3)分治法
- 将问题分解为若干子问题,分别构造子问题的解,然后合并。
- 例如,构造一个长度为 2^n 的数组,可以递归地构造两个长度为 2^(n-1)的数组。
(4)贪心策略
- 在每一步选择中,采取当前最优的决策。
- 例如,构造一个字符串,使得没有两个相邻的字符相同,可以贪心地选择与上一个字符不同的字符。
4. 例题
(1)数组构造:构造一个排列,使得相邻元素的差的绝对值构成一个排列
代码实现
def construct_permutation(n):
result = []
left, right = 1, n
for i in range(n):
if i % 2 == 0:
result.append(left)
left += 1
else:
result.append(right)
right -= 1
return result
# 测试代码
n = 5
print(construct_permutation(n)) # 输出: [1, 5, 2, 4, 3]
(2)图构造:构造一个无向图,使得每个顶点的度数恰好为 k
- 问题描述:给定整数 n 和 k,构造一个无向图,使得每个顶点的度数恰好为 k。
- 构造方法:
-
- 如果 n 是偶数,可以构造一个正则图(如环形图或完全图)。
- 如果 n 是奇数且 k 是偶数,可以构造一个正则图。
- 如果 n 是奇数且 k 是奇数,则无法构造满足条件的图。
代码实现
def construct_regular_graph(n, k):
if n * k % 2 != 0:
return None # 无法构造
edges = []
for i in range(n):
for j in range(1, k // 2 + 1):
edges.append((i, (i + j) % n))
return edges
# 测试代码
n, k = 6, 2
print(construct_regular_graph(n, k)) # 输出: [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5), (4, 5), (4, 0), (5, 0), (5, 1)]
(3)字符串构造:构造一个由 0
和 1
组成的字符串,使得没有两个相邻的字符相同
- 问题描述:给定整数 (n),构造一个长度为 (n) 的字符串,由
0
和1
组成,且没有两个相邻的字符相同。 - 构造方法:
-
- 交替放置
0
和1
。
- 交替放置
代码实现
def construct_binary_string(n):
result = []
for i in range(n):
result.append(str(i % 2))
return ''.join(result)
# 测试代码
n = 5
print(construct_binary_string(n)) # 输出: "01010"