算法刷题-动态规划之区间DP

今天是最后一天的区间dp,明天博主将给大家带来新的篇章。

1.

题目描述

在 Mars 星球上,每个 Mars 人都随身佩带着一串能量项链。在项链上有 N 颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘 (吸盘是 Mars 人吸收能量的一种器官 )的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为 m,尾标记为 r,后一颗能量珠的头标记为 r,尾标记为 n,则聚合后释放的能量为 (Mars 单位 ),新产生的珠子的头标记为 m,尾标记为 n。

需要时,Mars 人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设 N=4,4 颗珠子的头标记与尾标记依次为 (2,3) (3,5) (5,10) (10,2)。我们用记号 ⊕表示两颗珠子的聚合操作,(j⊕k) 表示第 j,k 两颗珠子聚合后所释放的能量。则第 4、1 两颗珠子聚合后释放的能量为:

(4⊕1)=10×2×3=60。

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为

((4⊕1)⊕2)⊕3)=10×2×3+10×3×5+10×5×10=710。

输入描述

第一行是一个正整数 N (4≤N≤100),表示项链上珠子的个数。

第二行是 NN 个用空格隔开的正整数,所有的数均不超过 10001000。第 ii 个数为第 ii 颗珠子的头标记 (1≤i≤N)(1≤i≤N),当 i<Ni<N 时,第 ii 颗珠子的尾标记应该等于第 i+1i+1 颗珠子的头标记。第 NN 颗珠子的尾标记应该等于第1颗珠子的头标记。

至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。

输出描述

输出一个正整数 E (E≤2.1×109),为一个最优聚合顺序所释放的总能量。

#include <bits/stdc++.h>
using namespace std;
const int N=104;
using ll=long long;
int dp[2*N][2*N],a[2*N];
int main()
{
  int n;cin>>n;
  for(int i=1;i<=n;i++){
    cin>>a[i];
    a[n+i]=a[i];
  }
  for(int len=2;len<=n;len++){
    for(int i=1;i+len-1<=2*n;i++){
      int j=i+len-1;
      for(int k=i;k<j;k++){
        dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+a[i]*a[k+1]*a[j+1]);
      }
    }
  }
  int ans=0;
  for(int i=1;i<=n;i++){
    ans=max(ans,dp[i][i+n-1]);
  }
  cout<<ans<<endl;
  return 0;
}

这道题是经典的环形dp的问题,将左右两端的数组分别相连,但是需要注意的是前端和后端的处理,a[k+1]是a[k]的后一点的取法。

这道题对环形数组的处理方式与昨日的那道题有所区别,那道题是考虑了是否从第一个数开始计算的方式,分别求出环形与非环形的情况再进行比较,要注意区别这两种方式还是要根据具体的题意方式来进行抉择。

2.

问题描述

给定一个数字字符串,你需要从该字符串中找出满足条件的连续子数字对的数量。这里所说的连续子数字是指数字字符串截去任意长度的前缀和后缀(可以为零)得到的剩余数字表示,截取出的剩余数字不能有前导 0。

例如,对于数字字符串 1234567,其中一个合法的连续子数字是 456456,但 124 和 235 都不合法。

现在的任务是找到两个不重叠的连续子数字,使得这两个连续子数字满足以下条件:

  • 子数字 1是子数字 2 的逆序。

然后求出满足条件的连续子数字对的数量。

输入格式

第一行输入一个正整数 n,表示字符串的长度。(1≤n≤5×103)

第二行输入一个字符串 s。(∣s∣=n,1≤i≤n,si​∈{0,1,...,8,9})

输入数据不包含前导 0。

输出格式

输出一个整数,为满足条件的连续子数字对的数量。

#include <bits/stdc++.h>
using namespace std;
int n,a[5005],dp[5004][5004],res[5004];
char str[5008];
int main()
{
  cin>>n;
  cin>>str+1;
  for(int i=1;i<=n;i++)
  {
    a[i]=str[i]-'0';
    if(a[i]!=0)
    {
      res[i]=res[i-1]+1;
    }
    else
    res[i]=res[i-1];
  }
  long long ans=0;
  for(int len=2;len<=n;len++)
  {
    for(int l=1;l+len-1<=n;l++)
    {
      int r=len+l-1;
      if(a[r]==a[l])
      {
        dp[l][r]=dp[l+1][r-1]+1;
        if(a[l]!=0)
        {
          int k=res[l+dp[l][r]-1]-res[l-1];
          ans+=k;
        }
      }
    }
  }
  cout<<ans<<endl;
  return 0;
}

每次利用r.l计算出的k是逆序子串对中一侧的子串长度,也是包括端点的逆序子串对的一侧子串的所有子串数量,这样找出所有符合情况的端点,就可以枚举出来答案。

这道题是算法赛的真题,十分有难度,感兴趣的小伙伴可以尝试一下。

今天的分享就到这里,感谢大家的点赞与关注。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值