在40亿个数组查找一个数是否存在(一个面试题)
给定一个数组nums, 满足条件:
- 0 <= nums[i] <= 4*1e9
- 0 <= nums.length() <= 4*1e9
思考
- 数据范围比较大,同时数据的值也比较大,就相当于在40亿个数中找某个数是否存在
- 使用顺序查找,时间复杂度O(n), 显然能找到,但是时间消耗太多了
- 可以使用二分算法,先对数组进行排序,时间复杂度为O(logn), 但数据量太大了,时间消耗还是很大
因此引入一种新的算法,采用以空间换时间的方式来实现快速的查找
位图算法
引入一个集合
| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 |
用一个bit位来表示一个数,1表示这个数存在,0表示这个数不存在
n 个bit就能表示0~n-1, 如图表示存在[0,4,7,8,10,11,15], 也就是说我们可以使用很多个bit位来表示数字是否存在
总共需要的存储空间
那对于40亿个数需要多少一共需要40亿+1个bit位,换算得一共需要:
sum_char = 4*1e9 / 8 + 1个字节(/运算会向下取整需要+1)
使用给定的数据初始化(这里可能讲得不是很清楚,只要明白用bit位来存储数据这个思路就可以了,后面代码中也有解释)
- 前面已经得到了所需的存储这些数的空间,接下来就是把这些数放在这个空间内,应该输入存在呢?我们使用下面的方法
- 首先对于一个数n我们首先需要知道它在空间中所处的位置,然后将这个位置位置为1就表示空间中存在这个数
- 先确定所在的字节pos1 = n / 8, 比如说8 在第2个字节,9在第2个字节,4在第一个字节
- 在确定所在字节的具体位置pos2 = n % 8, 比如8 在第2个字节的0号位置上,9在第二个字节的1号位置上,4在第一个字节的4号位置上
- 所以n 的最终位置为pos1 + pos2 (pos1和pos2操作的空间大小不一样,写代码时需要注意)
- 为了快速将pos设置为1我们还可以使用位运算将pos 的值 | 1
查找给定的数
- 参考前面的思路,找到n所在的位置然后判断所在位置是0还是1,为0表示不存在,为1表示存在
- 同样判断是否为1也能使用位运算 pos的值 & 1 (找位置同上)
代码如下
#include <iostream>
// 这里需要传入初始化的数据,为了方便直接直接加入%3的数
void Init(char* data, long long maxSize) {
for (long long i = 0; i <= maxSize; i++) {
if (i % 3 == 0) {
char* pos = data + i / 8; // i所在字节的起始位置
*pos = *pos | (1 << i % 8); // 设置为1,对i所在字节后的8个bit位的操作
}
}
}
// 查找操作
bool Check(char* data, long long n){
char* pos = data + n / 8;
bool ret = *pos & (1 << n % 8);
return ret; //也可以一步写
}
int main() {
const long long maxSize = 4 * 1e9;
int sum_char = maxSize / 8 + 1;
// 申请空间
char* data = (char*)malloc(sizeof(char) * sum_char);
Init(data, maxSize);
long long num;
std::cin >> num;
if (Check(data, num)) {
std::cout << "Yse" << std::endl;
}
else {
std::cout << "No" << std::endl;
}
}
总结
- 这个题目主要就是给我们提供一个思路,当数据量过大的时候,能使用bit位来表示一个数是否存在
- 涉及到一些简单的位运算,同时比较难的点应该在于对于char的操作,pos1和pos2操作的空间的大小不同 pos1对char 操作, pos2对n所在字节的bit操作
2017

被折叠的 条评论
为什么被折叠?



