ELM极限学习机回归预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

近年来,随着信息技术的飞速发展和数据量的爆炸式增长,回归预测作为数据分析领域的重要组成部分,在金融预测、天气预报、医学诊断、工程控制等诸多领域发挥着日益重要的作用。传统的回归模型,如线性回归、支持向量机(SVM)和人工神经网络(ANN)等,虽然在解决特定问题上取得了显著成果,但仍存在训练时间长、参数调节复杂、容易陷入局部最优等问题。为了应对这些挑战,黄广斌教授于2004年提出的极限学习机(Extreme Learning Machine,ELM)以其卓越的学习速度、良好的泛化能力和简洁的算法结构,迅速成为机器学习领域的研究热点。本文将深入探讨ELM在回归预测中的研究进展,分析其优势与不足,并对未来的发展方向进行展望。

一、极限学习机的基本原理与优势

ELM是一种单隐层前馈神经网络(Single-hidden Layer Feedforward Neural Network,SLFN)的快速学习算法。其核心思想是:随机初始化输入权重和隐层偏置,无需迭代调整,只需计算输出权重即可完成模型的训练。具体而言,ELM的训练过程主要包括以下几个步骤:

  1. 随机初始化:

     随机生成输入层到隐层神经元的连接权重矩阵和隐层神经元的偏置向量。

  2. 计算隐层输出:

     根据输入样本、输入权重和隐层偏置,计算隐层神经元的输出矩阵。

  3. 计算输出权重:

     通过求解线性方程组或者广义逆矩阵,计算隐层输出到输出层的权重矩阵。

与传统的基于梯度下降的神经网络训练方法相比,ELM具有以下显著优势:

  • 学习速度快:

     由于无需迭代训练,ELM的训练速度极快,尤其适用于大规模数据集和实时性要求高的应用场景。

  • 参数调节简单:

     ELM只需要设置隐层神经元的个数,而输入权重和隐层偏置则随机初始化,大大简化了参数调节的复杂性。

  • 泛化能力强:

     理论上证明,当隐层神经元个数足够多时,ELM可以逼近任意连续函数,具有良好的泛化能力。

  • 避免局部最优:

     由于避免了迭代训练,ELM能够有效避免陷入局部最优解,从而提高模型的预测精度。

二、ELM在回归预测中的研究进展

自ELM提出以来,国内外学者针对其在回归预测中的应用进行了大量的研究,并在多个领域取得了显著成果。

  • 标准ELM回归预测的应用: 最早的应用集中于直接使用标准ELM进行回归预测。例如,应用于时间序列预测、电力负荷预测、金融市场预测等。这些研究验证了ELM在解决回归预测问题上的有效性和高效性。然而,标准ELM也存在一些局限性,例如,随机初始化的参数可能导致模型性能不稳定,隐层神经元个数的选择缺乏理论指导等。

  • ELM的改进算法及其应用: 为了克服标准ELM的局限性,研究者提出了许多改进算法,例如:

    • 正则化ELM(Regularized ELM,RELM):

       通过在目标函数中引入正则化项,有效抑制过拟合现象,提高模型的泛化能力。

    • 在线序列ELM(Online Sequential ELM,OSELM):

       能够处理数据流,实现模型的在线更新和学习,适用于动态变化的回归预测场景。

    • 核极限学习机(Kernel ELM,KELM):

       引入核函数,将输入数据映射到高维特征空间,提高模型的非线性建模能力。常用的核函数包括径向基函数(RBF)、多项式核函数等。KELM在处理复杂非线性回归问题上表现出色。

    • 集成ELM(Ensemble ELM):

       通过集成多个ELM模型,提高模型的稳定性和预测精度。常用的集成方法包括Bagging、Boosting等。

这些改进算法在标准ELM的基础上,进一步提高了模型的性能,使其能够更好地适应不同的回归预测问题。

  • ELM与其他方法的融合应用: 为了充分利用不同算法的优势,研究者将ELM与其他方法进行融合,构建混合预测模型。例如:

    • ELM与SVM的融合:

       利用SVM进行特征选择或者参数优化,然后利用ELM进行回归预测。

    • ELM与遗传算法(GA)、粒子群算法(PSO)等优化算法的融合:

       利用优化算法优化ELM的参数,例如隐层神经元个数、输入权重等,从而提高模型的预测精度。

    • ELM与小波分析(Wavelet Analysis)、经验模态分解(Empirical Mode Decomposition,EMD)等信号处理方法的融合:

       利用信号处理方法对原始数据进行预处理,提取有效特征,然后利用ELM进行回归预测,提高模型的鲁棒性和抗噪能力。

这些融合方法充分发挥了不同算法的优势,在提高回归预测精度方面取得了显著效果。

三、ELM回归预测的挑战与展望

尽管ELM在回归预测领域取得了显著进展,但仍面临一些挑战:

  • 隐层神经元个数的选择:

     目前,隐层神经元个数的选择主要依赖经验或者试错法,缺乏有效的理论指导。如何确定最佳的隐层神经元个数,是一个重要的研究方向。

  • 随机初始化的参数:

     虽然随机初始化简化了训练过程,但也可能导致模型性能不稳定。如何选择合适的随机初始化策略,以提高模型的稳定性和预测精度,是一个值得深入研究的问题。

  • 大规模数据处理:

     尽管ELM的训练速度快,但在处理超大规模数据时,仍可能面临内存限制和计算效率问题。如何设计适用于大规模数据的ELM算法,是一个重要的研究方向。

  • ELM的理论分析:

     虽然ELM在实践中表现良好,但其理论分析相对薄弱。需要加强对ELM的泛化能力、稳定性和收敛性的理论研究,为ELM的应用提供更坚实的理论基础。

展望未来,ELM在回归预测领域的研究将朝着以下几个方向发展:

  • 自适应隐层神经元个数选择:

     研究能够根据数据特征自适应调整隐层神经元个数的ELM算法,提高模型的自适应能力和预测精度。

  • 参数优化策略研究:

     研究有效的参数优化策略,例如利用优化算法优化输入权重和隐层偏置,或者采用更有效的随机初始化方法,提高模型的稳定性和预测精度。

  • 大规模数据处理技术研究:

     研究基于分布式计算和并行处理的ELM算法,提高ELM处理大规模数据的能力。

  • ELM的理论研究:

     加强对ELM的理论分析,例如泛化误差分析、稳定性和收敛性分析等,为ELM的应用提供更坚实的理论基础。

  • ELM在新的应用领域的拓展:

     将ELM应用于新的应用领域,例如深度学习、强化学习等,拓展ELM的应用范围。

四、结论

极限学习机作为一种高效的单隐层前馈神经网络学习算法,在回归预测领域展现出巨大的潜力。其快速的学习速度、简单的参数调节和良好的泛化能力,使其成为解决回归预测问题的一种有效方法。虽然ELM仍面临一些挑战,但随着研究的深入和技术的进步,相信ELM将在回归预测领域发挥越来越重要的作用,为各个行业的智能化发展做出更大贡献。

⛳️ 运行结果

🔗 参考文献

[1] 胡庆国,宋新智.基于优化极限学习机的高速公路造价预测[J].公路与汽运, 2014(2):6.DOI:10.3969/j.issn.1671-2668.2014.02.057.

[2] 吕娜.极限学习机及其在无线频谱预测中的应用研究[D].兰州大学,2014.

[3] 丁华,常琦,杨兆建,等.基于极限学习机的采煤机功率预测算法研究[J].煤炭学报, 2016(3):7.DOI:10.13225/j.cnki.jccs.2015.0928.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值