✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
压缩感知(Compressed Sensing, CS)作为一种新型信号处理理论,颠覆了奈奎斯特采样定理的传统认知,在远低于奈奎斯特速率的采样下即可实现对稀疏或可压缩信号的高精度重构。图像信号由于其固有的空间相关性,在适当的变换域下具有良好的稀疏性,因此压缩感知在图像获取和复原领域展现出巨大的应用潜力。然而,在实际应用中,采样过程往往伴随着加性噪声的引入,特别是加性稳态白有色高斯噪声(Additive Stationary White Colored Gaussian Noise)。这种噪声会严重影响压缩感知图像的重构质量,导致复原图像出现伪影和细节丢失。
传统的压缩感知图像复原方法主要依赖于稀疏表示和L1范数最小化等凸优化技术。这些方法虽然在无噪声或低噪声环境下表现良好,但在噪声存在时,其性能会急剧下降。为了应对噪声挑战,研究人员引入了正则化项,如总变差(Total Variation, TV)正则化或基于学习的正则化。然而,TV正则化容易导致图像纹理细节的平滑,而基于学习的正则化需要大量的训练数据,且泛化能力有限。
本文深入研究基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原方法,旨在有效去除加性稳态白有色高斯噪声,同时保留图像的纹理和边缘细节,提高图像复原的质量和鲁棒性。本研究的核心在于结合了两种强大的噪声处理和稀疏表示技术:自适应曲线阈值和非局部稀疏正则化。自适应曲线阈值是一种针对噪声分布特点设计的非线性阈值函数,能够根据信号的局部特性调整阈值大小,从而更有效地抑制噪声。非局部稀疏正则化则利用图像中存在的重复或相似结构,通过在非局部区域寻找相似块,并在这些块上施加稀疏约束,从而更好地捕捉图像的内在结构信息,实现更精确的稀疏表示。
本文将首先回顾压缩感知的基本理论和图像复原中的应用现状,重点分析加性稳态白有色高斯噪声对压缩感知图像复原的影响。接着,详细阐述自适应曲线阈值的设计原理和其在噪声抑制中的优势。然后,介绍非局部稀疏正则化的概念及其在图像处理中的应用,并分析其在捕捉图像非局部相关性方面的优势。在此基础上,提出将自适应曲线阈值和非局部稀疏正则化相结合的压缩感知图像复原模型。该模型通过构建合适的优化问题,将噪声抑制和稀疏重构相结合,旨在同时实现噪声去除和高质量图像复原。
为了求解所提出的优化问题,本文将探讨有效的数值优化算法,例如迭代阈值算法和基于交替方向乘子法(Alternating Direction Method of Multipliers, ADMM)的优化框架。这些算法能够有效地处理模型的非线性和非光滑特性。最后,通过大量的实验验证,在不同采样率和噪声水平下,对所提出的方法与传统的压缩感知图像复原方法进行对比评估。实验结果将表明,本文提出的基于自适应曲线阈值和非局部稀疏正则化的方法在噪声去除、纹理保留和峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)等客观评价指标以及主观视觉效果上均优于现有方法,验证了该方法的有效性和优越性。
关键词: 压缩感知;图像复原;自适应曲线阈值;非局部稀疏正则化;加性稳态白有色高斯噪声;优化算法
1. 引言
随着信息技术的飞速发展,图像信息已经成为我们获取、传递和处理信息的主要载体之一。然而,图像的采集、存储和传输往往受到硬件限制和信道条件的制约。压缩感知理论的提出为解决这一问题提供了新的思路。不同于传统的“先采样后压缩”模式,压缩感知直接在采样过程中实现信号的压缩,显著降低了采样率,为图像采集和传输带来了革命性的变革。在医学成像、遥感图像获取、视频监控等领域,压缩感知已展现出巨大的应用前景。
压缩感知的核心思想在于利用信号在某个变换域下的稀疏性。对于图像信号而言,其本身通常不是严格稀疏的,但在小波域、离散余弦变换(Discrete Cosine Transform, DCT)域或学习得到的字典等变换域下,其变换系数往往是稀疏的或可压缩的。压缩感知理论指出,如果一个信号是K-稀疏的(即只有K个非零系数),那么只需要M个随机投影测量值(M远小于信号长度N,且M≥CKlog(N/K),C为常数),就可以通过求解一个L1范数最小化问题实现高概率的精确重构。
然而,在实际的图像采集过程中,噪声是不可避免的。特别是加性稳态白有色高斯噪声,由于其统计特性明确且广泛存在于各种采集系统中,对压缩感知图像复原的性能构成了严重的挑战。这种噪声叠加在压缩测量值上,使得重构问题从一个精确的稀疏恢复问题变为一个带噪声的稀疏恢复问题。简单的L1范数最小化方法在噪声存在时,容易将噪声误认为信号的稀疏成分,导致重构图像出现伪影,特别是低幅度但重要的稀疏系数容易被噪声淹没而丢失。
为了提高压缩感知图像复原在噪声环境下的鲁棒性,研究人员提出了各种改进方法。一种常见的思路是在重构模型中引入正则化项来抑制噪声。例如,总变差(Total Variation, TV)正则化由于其能够惩罚图像的局部变化,常用于去噪和边缘保留。然而,TV正则化倾向于使图像变得分段常数,容易平滑图像的纹理细节,导致重构图像显得过于平滑。另一种思路是利用图像的非局部自相似性。自然图像中存在大量的重复或相似结构,这些非局部相关性是图像的重要结构信息。基于非局部均值(Non-Local Means, NLM)的思想,研究人员提出了非局部稀疏正则化方法,通过在非局部区域寻找相似块,并在这些块上施加稀疏约束,从而更有效地捕捉图像的内在结构信息,实现更精确的稀疏表示和噪声抑制。
尽管现有的方法取得了一定的进展,但在噪声水平较高或采样率较低的情况下,如何同时有效地去除加性稳态白有色高斯噪声并保留图像的细节和纹理仍然是一个具有挑战性的问题。传统的阈值方法,如硬阈值和软阈值,虽然简单有效,但其阈值设定通常是全局性的,未能考虑信号的局部特性和噪声分布的复杂性。这使得在信号幅度较小时容易误判为噪声而被去除,而在信号幅度较大时可能未能完全抑制噪声。
为了解决这些问题,本文提出了一种基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原方法。自适应曲线阈值能够根据信号的局部统计特性和噪声水平动态调整阈值,从而更精确地分离信号和噪声。与传统的直线阈值函数不同,曲线阈值函数具有更灵活的形状,能够更好地适应信号和噪声的分布特点。非局部稀疏正则化则利用图像的非局部自相似性,通过在相似块上进行稀疏表示,有效地利用图像的结构信息,增强了对噪声的抑制能力,同时保留了图像的细节和纹理。本研究旨在将这两种技术相结合,构建一个更加强大和鲁棒的压缩感知图像复原框架,以期在加性稳态白有色高斯噪声环境下实现高质量的图像复原。
2. 压缩感知基本理论与噪声影响
2.1 压缩感知基本原理
2.2 加性稳态白有色高斯噪声的影响
然而,加性稳态白有色高斯噪声会均匀地影响所有的测量值。在重构过程中,噪声会被放大并传播到重构信号中。对于稀疏表示而言,噪声会导致稀疏系数不再是严格的零,而是非零的小值。传统的L1范数最小化倾向于保留所有非零系数,包括由噪声引起的非零系数,从而导致重构图像出现噪声伪影。同时,一些幅值较小的真实稀疏系数可能被噪声淹没,导致图像细节的丢失。此外,当噪声水平较高时,数据保真项与稀疏性约束之间的平衡变得更加困难,不合适的正则化参数设置会严重影响重构性能。因此,如何在带噪声的测量值下实现高精度、高质量的图像复原,是压缩感知领域的一个重要研究方向。
3. 自适应曲线阈值
传统的信号去噪方法常采用阈值法,通过在变换域下对信号系数进行阈值处理来实现去噪。常用的阈值函数包括硬阈值和软阈值。硬阈值将小于阈值的系数置零,大于等于阈值的系数保持不变;软阈值将小于阈值的系数置零,大于阈值的系数向零收缩一个阈值。然而,这些方法存在一些局限性:
- 阈值设定困难:
阈值的选择对去噪效果至关重要,但如何选择一个最优的阈值通常需要先验知识或通过经验确定,且最优阈值往往依赖于噪声水平和信号特性,难以普适。
- 阈值函数的限制:
硬阈值容易在阈值附近产生振荡和伪影,而软阈值会过度平滑信号,导致细节丢失。这两种阈值函数都是线性的或分段线性的,不能很好地适应信号和噪声的复杂分布。
- 全局阈值的问题:
大多数阈值方法采用全局阈值,未能考虑信号在不同区域的局部特性和噪声在不同尺度的表现,导致去噪效果不均匀。
为了克服传统阈值方法的不足,自适应阈值方法应运而生。自适应阈值方法的核心思想是根据信号的局部特性或噪声水平动态调整阈值大小。自适应曲线阈值进一步将阈值函数设计为非线性的曲线形式,以更好地适应信号和噪声的分布特点。
自适应曲线阈值的基本思想是在某个变换域(例如小波域)下,对变换系数进行处理。对于某个变换系数ww,其自适应阈值处理函数可以表示为:
w^=f(w,T(w,σ))
- 基于局部方差:
在局部区域内计算系数的方差,方差越大,表明该区域包含更多信号成分,阈值可以设置得相对较低;方差越小,表明该区域更可能是噪声,阈值可以设置得相对较高。
- 基于系数幅值:
系数幅值越大,越可能是信号成分,阈值可以设置得相对较低;系数幅值越小,越可能是噪声,阈值可以设置得相对较高。
- 基于噪声估计:
在变换域下估计噪声的标准差,并根据噪声标准差来确定阈值。
自适应曲线阈值函数的设计至关重要。一个理想的曲线阈值函数应该能够平滑地过渡,避免硬阈值产生的振荡,同时又不像软阈值那样过度收缩信号。一些常见的曲线阈值函数包括:
- Sigmoid 函数类:
利用Sigmoid函数的非线性特性构建阈值函数,能够实现平滑的过渡。
- Gaussian 函数类:
利用Gaussian函数的钟形曲线特性构建阈值函数,能够对不同幅值的系数进行差异化处理。
- 基于学习的阈值函数:
通过机器学习方法从大量数据中学习最优的曲线阈值函数。
在压缩感知图像复原中,将自适应曲线阈值应用于变换域下的稀疏系数处理,可以在重构迭代过程中或作为后处理步骤来抑制噪声。其优势在于能够更精确地识别和去除噪声引起的非零系数,同时保留真实的稀疏系数,从而提高重构图像的质量和细节。
4. 非局部稀疏正则化
非局部稀疏正则化是一种利用图像非局部自相似性来促进稀疏表示和噪声抑制的技术。自然图像中存在大量的重复或相似的图像块(patch)。这些相似块在空间上可能相距很远,但它们在结构上具有很强的相关性。这种非局部自相似性是自然图像的重要先验信息,可以用于图像去噪、超分辨率、图像修复等任务。
非局部稀疏正则化的核心思想是将图像分解为一系列图像块,并在整个图像中寻找与当前块相似的块。然后,将这些相似块堆叠在一起形成一个块组(group)。由于相似块在结构上相似,它们在某个变换域下(例如小波变换、DCT变换)具有相似的稀疏表示。因此,可以在这些块组上施加稀疏约束,鼓励它们在变换域下具有稀疏性。
具体而言,非局部稀疏正则化的过程可以概括为:
- 块划分与相似块搜索:
将待处理图像划分为重叠或非重叠的图像块。对于每一个图像块,在整个图像中搜索与其相似的图像块。相似性度量通常采用欧氏距离、结构相似性指标(Structural Similarity Index, SSIM)等。为了降低计算复杂度,相似块搜索通常限定在一个有限的搜索窗口内。
- 块组构建:
将搜索到的相似块堆叠在一起形成一个三维的块组。
- 变换域表示:
对每个块组进行三维变换(例如三维小波变换或三维DCT变换)。由于块组中包含相似的图像块,其在变换域下通常具有很高的稀疏性。
- 稀疏约束与处理:
在变换域下对块组系数施加稀疏约束,例如L1范数约束或阈值处理。这可以有效地抑制噪声,同时保留图像的结构信息。
- 逆变换与块重构:
对处理后的块组系数进行逆变换,得到去噪或复原后的块组。
- 块聚合:
将处理后的块组重新放回图像中。由于块划分通常是重叠的,需要对重叠区域进行加权平均或其他聚合方式来获得最终的图像。
在压缩感知图像复原中,非局部稀疏正则化可以作为重构模型中的一个正则化项。重构模型可以表示为:
min∥y−As∥22+λR(x)
非局部稀疏正则化的优势在于:
- 有效利用非局部信息:
能够捕捉图像中相距较远的重复结构,提高了稀疏表示的准确性。
- 增强噪声抑制能力:
相似块的堆叠和平滑的变换域处理能够有效地抑制噪声。
- 保留图像细节和纹理:
通过利用图像的结构信息,能够更好地保留图像的纹理和边缘细节。
然而,非局部稀疏正则化也存在一些挑战:
- 计算复杂度高:
相似块搜索和块组处理涉及大量的计算,尤其对于高分辨率图像。
- 参数选择:
相似块搜索参数(如块大小、搜索窗口大小、相似性阈值)和正则化参数的选择对性能影响较大。
尽管存在挑战,非局部稀疏正则化在图像去噪和复原领域已取得了显著的成果,其利用图像内在结构的强大能力使其成为解决噪声环境下压缩感知图像复原问题的重要工具。
5. 基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原模型
为了同时有效去除加性稳态白有色高斯噪声并保留图像的纹理和边缘细节,本文提出将自适应曲线阈值和非局部稀疏正则化相结合的压缩感知图像复原模型。我们将这两种技术融入到一个统一的优化框架中,通过交替迭代的方式实现噪声抑制和稀疏重构。
我们考虑带噪声的压缩感知测量模型:
y=Φx+n
mins,z,w∥y−ΦΨs∥22+λ1∥z∥1+λ2R(w)
通过ADMM框架,我们可以将原始问题分解为以下子问题进行交替求解:
通过以上迭代过程,我们交替优化稀疏系数、带自适应阈值的稀疏系数以及通过非局部稀疏正则化处理的图像。自适应曲线阈值处理在每次更新稀疏系数时进行,能够有效地抑制噪声引起的非零系数。非局部稀疏正则化处理则在图像域进行,利用图像的非局部自相似性进一步去噪和保留结构。两种技术的结合能够发挥各自的优势,实现更优的复原效果。
6. 自适应曲线阈值的具体实现
7. 非局部稀疏正则化的具体实现
BM3D算法的主要步骤包括:
- 块匹配:
将图像划分为重叠的块,对每个块在搜索窗口内寻找相似块。
- 块组构建与三维变换:
将相似块堆叠成三维块组,并进行三维变换。
- 三维阈值滤波:
在三维变换域下对块组系数进行阈值滤波,抑制噪声。
- 逆三维变换与块聚合:
对滤波后的系数进行逆三维变换,得到去噪后的块组,并通过加权平均等方法聚合重叠区域。
通过在ADMM框架中嵌入BM3D算法,我们将非局部稀疏正则化融入到压缩感知图像复原过程中。每一次迭代都利用图像的非局部自相似性进行去噪和结构保留,从而提高重构图像的质量。
8. 结论
本文深入研究了基于自适应曲线阈值和非局部稀疏正则化的压缩感知图像复原方法,旨在解决加性稳态白有色高斯噪声对压缩感知图像复原的严重影响。我们提出了一个将自适应曲线阈值和非局部稀疏正则化相结合的优化模型,并通过ADMM算法进行求解。自适应曲线阈值能够根据信号的局部特性和噪声水平动态调整阈值,从而更精确地分离信号和噪声。非局部稀疏正则化则利用图像的非局部自相似性,增强了对噪声的抑制能力,同时保留了图像的细节和纹理。
实验结果将表明,本文提出的方法在不同采样率和噪声水平下均取得了优于现有方法的复原效果,在客观评价指标(PSNR和SSIM)和主观视觉效果上均展现出优势。这验证了将自适应曲线阈值和非局部稀疏正则化相结合的有效性和优越性。
未来的研究方向可以包括:进一步优化自适应曲线阈值函数的设计,使其更好地适应不同类型的噪声和图像特性;改进非局部相似块搜索和块组处理算法,降低计算复杂度并提高鲁棒性;探索将基于深度学习的方法与本文提出的传统方法相结合,以期获得更好的复原性能;将本文方法推广到其他类型的信号复原问题,如视频、三维数据等。
⛳️ 运行结果
🔗 参考文献
[1] 谢婷.基于低秩稀疏约束的高光谱遥感图像复原方法研究[J].[2025-05-18].
[2] 王君妍.基于稀疏自适应滤波的高光谱图像重建算法研究[D].哈尔滨工程大学,2021.
[3] 尚晓清,王军锋,宋国乡.一种基于自适应阈值的图像去噪新方法[J].计算机科学, 2003, 30(9):2.DOI:CNKI:SUN:JSJA.0.2003-09-018.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇