✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代工业自动化、机器人学、自动驾驶以及许多其他领域,高效且鲁棒的路径规划是核心挑战之一。面对复杂、高维度的环境,传统的基于网格或图搜索的算法往往面临计算复杂度高、易陷入局部最优等问题。快速探索随机树(Rapidly-exploring Random Tree,RRT)算法以其probabilistic completeness和在复杂环境中的优异表现,成为解决这类问题的强大工具。本文将深入探讨RRT算法的原理、在二维和三维空间中的实现,以及如何通过各种改进策略使其在路径规划中实现“最佳”或至少是质量更高的路径。我们将详细阐述RRT算法的基本流程,分析其在2D和3D环境中的应用特点,并重点介绍RRT*等变体如何通过重布线(rewiring)机制逼近最优解。最后,本文将讨论RRT算法的优势、局限性以及未来发展方向。
引言
路径规划是机器人导航、无人机飞行、虚拟现实交互等应用的关键组成部分。其核心任务是在给定环境中,从起始点找到一条通往目标点的无碰撞路径。环境可能包含各种障碍物,且维度可能很高(例如,机器人手臂的关节空间)。传统的路径规划方法,如Dijkstra算法、A*算法等,通常需要在离散化的空间(如栅格地图)中进行搜索。虽然这些算法能够找到最优解(在离散化空间中),但随着环境维度和分辨率的增加,状态空间的规模呈指数级增长,导致计算量巨大,即所谓的“维数灾难”。
RRT算法是由Steven LaValle于1998年提出的一种基于采样的增量式路径规划算法。它的核心思想是通过在状态空间中随机采样,并以当前构建的随机树为基础,逐步向新的采样点进行扩展,从而快速探索未知区域。RRT算法的优点在于其无需显式地对整个状态空间进行离散化,能够有效地处理高维空间,并且具有probabilistic completeness,即在无限时间内,如果存在解,RRT算法以概率1能够找到一条路径。然而,标准的RRT算法通常只能找到一条可行路径,而不能保证路径是最优的(例如,最短路径)。为了克服这一限制,一系列改进的RRT算法被提出,其中最具代表性的是RRT*(RRT Star)算法,它通过在扩展过程中引入选择父节点和重布线机制,逐步逼近最优解。
本文将首先介绍RRT算法的基本原理和流程,然后详细讨论其在二维和三维空间中的具体实现细节。接着,我们将重点阐述RRT算法如何通过重布线机制实现路径的优化,并对比标准RRT和RRT在路径质量上的差异。最后,我们将总结RRT算法的优势与局限性,并展望其未来的发展趋势。
1. RRT算法的基本原理与流程
RRT算法是一种增量式的随机采样算法,它通过构建一棵随机树来探索状态空间。树的根节点是起始点。算法的核心思想是:
- 随机采样(Sampling):
在整个状态空间中随机生成一个采样点 qrandqrand。为了提高探索效率,通常会以一定的概率偏向目标点区域进行采样,即所谓的“目标偏向采样(Goal Biasing)”。
- 查找最近节点(Nearest):
在当前已构建的随机树 TT 中,找到距离 qrandqrand 最近的节点 qnearqnear。距离的定义取决于状态空间的度量方式,例如在欧几里德空间中使用欧几里德距离。
- 扩展(Steer):
从 qnearqnear 向 qrandqrand 方向扩展一步,生成一个新的节点 qnewqnew。扩展的步长(或称扩展距离)是算法的一个重要参数。扩展过程中需要进行碰撞检测,确保从 qnearqnear 到 qnewqnew 的路径是无碰撞的。如果扩展超过了步长限制,或者扩展路径发生碰撞,则本次扩展失败。
- 碰撞检测与添加到树(Collision Check and Add):
如果从 qnearqnear 到 qnewqnew 的路径是无碰撞的,则将 qnewqnew 添加到树 TT 中,并将 qnearqnear 设置为 qnewqnew 的父节点。
- 目标检查(Goal Check):
检查 qnewqnew 是否到达目标区域。如果到达,则路径规划成功,可以通过从 qnewqnew 沿着父节点回溯到起始点来获得规划的路径。
这个过程不断迭代,直到找到目标点或达到预设的最大迭代次数。
RRT算法的优点在于其能够快速探索未知区域,尤其在高维空间中表现良好。这是因为随机采样使得算法不会被局部极小值所困扰,能够有效地“穿透”狭窄通道。同时,增量式的构建方式使得算法能够逐步建立对环境的认知。
2. RRT算法在2D和3D空间中的实现
RRT算法在2D和3D空间中的实现原理基本相同,但具体细节有所不同,主要体现在状态表示、距离计算和碰撞检测等方面。
2.1 2D空间中的RRT实现
- 碰撞检测:
在2D环境中,障碍物通常表示为多边形或圆形。碰撞检测需要检查连接 qnearqnear 和 qnewqnew 的线段是否与任何障碍物相交。这可以通过线段与多边形(或圆形)的交点检测算法来实现。为了提高效率,可以使用空间划分数据结构(如四叉树)来加速障碍物的查找。
- 距离计算:
在3D欧几里德空间中,欧几里德距离同样适用。如果状态包含姿态信息,则需要定义一个合适的度量来衡量状态之间的距离。
- 碰撞检测:
在3D环境中,障碍物通常表示为三维几何体(如立方体、球体、多面体)。碰撞检测需要检查连接 qnearqnear 和 qnewqnew 的路径(通常假设为直线段,但对于具有非完整约束的系统可能需要考虑更复杂的运动模型)是否与任何障碍物发生碰撞。三维碰撞检测算法通常比二维更为复杂,常用的方法包括包围盒检测、轴对齐包围盒(AABB)树、有向包围盒(OBB)树或更精细的穿透深度计算。同样,使用空间划分数据结构(如八叉树)可以显著提高碰撞检测的效率。
3. 实现“最佳”路径规划:RRT*算法
标准的RRT算法能够找到一条可行路径,但这条路径通常不是最优的。这是因为RRT算法在扩展时仅仅关注将新节点连接到最近的现有节点,并没有考虑路径的总代价。为了实现最优或近似最优的路径规划,RRT*算法被提出。
RRT*算法在标准RRT算法的基础上引入了两个关键机制:
- 选择父节点(Choose Parent):
当生成新的节点 qnewqnew 后,RRT*算法并不仅仅将其连接到最近的节点 qnearqnear。它会在 qnewqnew 的一定半径范围内的现有节点中,选择一个使得从起始点经过该节点到达 qnewqnew 的路径总代价最小的节点作为 qnewqnew 的父节点。路径代价通常定义为路径的长度,但也可以是其他指标,如能耗或平滑度。
重布线机制使得RRT算法能够在构建随机树的同时,不断优化已存在的路径。随着迭代次数的增加,随机树会越来越密集,并且通过重布线,更多的节点会连接到更优的父节点,从而使得整棵树趋向于包含最优路径。RRT算法具有渐近最优性(Asymptotic Optimality),即当迭代次数趋近于无穷时,算法以概率1能够找到最优路径。
3.1 RRT*算法在2D和3D空间中的实现
RRT*算法在2D和3D空间中的实现同样遵循上述原理,但在距离计算、碰撞检测以及邻域节点的搜索等方面需要考虑维度差异。
- 邻域搜索半径:
选择父节点和重布线都需要在一定半径范围内搜索邻域节点。半径的大小会影响算法的收敛速度和路径质量。一个太小的半径可能导致算法收敛缓慢,而一个太大的半径可能增加计算量。文献中有一些关于如何动态调整半径的研究。
- 邻域节点查找:
在高维空间中高效地查找邻域节点至关重要。可以使用空间划分数据结构(如kd树)来加速最近邻和半径范围内的邻域搜索。
4. RRT算法的优势与局限性
4.1 RRT算法的优势
- 高维空间中的高效性:
RRT算法通过随机采样,能够有效地探索高维状态空间,避免了“维数灾难”的问题。
- Probabilistic Completeness:
如果存在解,标准RRT算法以概率1能够找到一条路径。
- 处理复杂环境:
RRT算法能够处理包含复杂障碍物的环境。
- 易于实现:
RRT算法的基本原理相对简单,易于实现。
- 渐近最优性(RRT):
* RRT*算法能够逐步逼近最优解。
4.2 RRT算法的局限性
- 非最优性(标准RRT):
标准RRT算法只能找到一条可行路径,不保证最优。
- 随机性:
算法的随机性使得每次运行的结果可能不同,且收敛速度难以预测。
- 路径质量:
标准RRT生成的路径通常不够平滑,可能需要进行后处理(如路径平滑算法)。
- 计算效率(RRT):
* RRT*算法的父节点选择和重布线过程增加了计算量,尤其是在密集环境中。
- 参数选择:
扩展步长、目标偏向概率、RRT*的邻域半径等参数的选择对算法的性能有重要影响。
5. 总结与展望
RRT算法及其变体,尤其是RRT*,为解决高维复杂环境下的路径规划问题提供了强大的框架。它们通过随机采样和增量式构建,有效地探索状态空间,并能够找到可行或近似最优的路径。在2D和3D空间中的实现虽然在细节上有所不同,但核心原理一致。
尽管RRT算法取得了显著的成功,但仍存在一些改进空间和未来研究方向:
- 提高收敛速度:
研究更有效的采样策略,例如基于采样的启发式方法,以引导树向目标方向更快地生长。
- 路径平滑:
结合路径平滑算法(如B样条曲线拟合)来优化RRT生成的路径,使其更适合机器人的实际执行。
- 处理动态环境:
将RRT算法扩展到动态环境中,能够应对移动障碍物和环境变化。
- 处理非完整约束:
研究如何将RRT算法应用于具有非完整约束的系统,例如汽车或飞机。
- 与学习方法的结合:
探索如何将RRT算法与强化学习或其他机器学习方法相结合,以学习更好的采样策略或路径评估函数。
- 并行与分布式计算:
利用并行计算和分布式系统来加速RRT算法的执行,以应对大规模和高维度的路径规划问题。
⛳️ 运行结果
🔗 参考文献
[1] 杨吉超.基于针体识别和针尖位姿预测的柔性针轨迹控制[J].哈尔滨理工大学, 2019.
[2] 李宏伟,姜媛媛.一种基于BRRT算法的矿井救援机器人路径规划方法:CN202110494227.6[P].CN113110491A[2025-04-22].
[3] 徐远征,吴长水.基于改进快速探索随机树的复杂环境垂直泊车路径规划[J].汽车技术, 2022(007):000.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇