✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着科学技术的飞速发展,复杂优化问题在工程、经济、生物等众多领域日益突出。传统的优化算法往往难以有效应对高维、多模态、非线性等复杂特性,亟需发展更高效、鲁棒的智能优化方法。粒子群优化(Particle Swarm Optimization, PSO)算法和蝴蝶优化算法(Butterfly Optimization Algorithm, BOA)作为两种近年来备受关注的群智能优化算法,各自在寻优过程中展现出独特的优势。PSO以其简洁的结构和良好的收敛性在许多领域取得了成功应用,但易陷入局部最优的缺点限制了其在高维复杂问题上的性能。BOA通过模拟蝴蝶的嗅觉行为进行搜索,具有较强的全局搜索能力,但在收敛速度和精度方面有待提升。为了充分发挥两种算法的优势,克服各自的不足,本文深入研究了粒子群算法和蝴蝶算法的组合机制,提出了一种基于混沌理论的粒子群混沌混合蝴蝶优化算法(Chaotic Particle Swarm and Butterfly Hybrid Optimization Algorithm, CPSBHOA)。该算法将PSO的局部搜索能力与BOA的全局探索特性相结合,并通过引入混沌映射增强种群的多样性,避免早熟收敛。本文详细阐述了CPSBHOA的算法原理、流程以及关键改进策略,并通过一系列标准测试函数对算法的性能进行了评估和比较。实验结果表明,与传统的PSO、BOA以及其他改进算法相比,CPSBHOA在收敛速度、寻优精度和鲁棒性等方面均展现出显著优势,为解决复杂优化问题提供了一种有效的新方法。
关键词: 粒子群优化算法;蝴蝶优化算法;群智能;混沌映射;混合算法;复杂优化问题
引言
在现代科学与工程领域,优化问题无处不在。从生产调度、资源分配到机器学习模型的参数优化、复杂系统的控制设计,都涉及到寻求最佳解决方案。这些优化问题往往具有高维度、多峰性、非线性、约束复杂等特点,使得传统的基于梯度或穷举的优化方法难以有效应对。在这样的背景下,受自然界生物行为启发的群智能优化算法应运而生,并因其无需梯度信息、易于实现和较强的全局搜索能力而受到广泛关注。
粒子群优化算法(PSO)由Kennedy和Eberhart于1995年提出,模拟鸟群觅食行为,通过个体(粒子)之间的信息交流和协作来寻找最优解。每个粒子根据自身找到的历史最优位置(pbest)和整个群体找到的全局最优位置(gbest)更新其速度和位置。PSO因其原理简单、参数少、实现方便而得到广泛应用,在许多优化问题上取得了良好的效果。然而,随着问题维度的增加和复杂性的提高,PSO容易陷入局部最优,收敛速度可能变慢,且在多模态问题上难以找到全局最优解。
蝴蝶优化算法(BOA)是Arora和Singh于2019年提出的一种新型群智能算法,模仿蝴蝶利用嗅觉感知气味浓度来寻找食物来源或交配伴侣的行为。BOA通过模拟蝴蝶在不同阶段的搜索行为,包括全局搜索阶段(基于气味传播)和局部搜索阶段(基于随机游走)。BOA具有较强的全局探索能力,能够有效探索解空间。然而,与PSO类似,BOA在后期收敛速度可能较慢,且在某些情况下寻优精度有待提高。
为了克服单一智能优化算法的局限性,混合算法应运而生。混合算法通过结合不同算法的优势,互补其不足,从而提升整体的优化性能。目前已有一些研究尝试将PSO与其他算法进行混合,例如与遗传算法、模拟退火算法等。同样,也有将BOA与其他算法结合的研究。然而,将PSO和BOA两种具有不同搜索机制的群智能算法进行有效融合,并进一步提升其性能的研究尚不充分。
本文旨在深入探讨粒子群算法和蝴蝶算法的组合策略,提出一种基于混沌理论的粒子群混沌混合蝴蝶优化算法(CPSBHOA)。该算法的核心思想是在保留PSO和BOA各自优点的基础上,通过引入混沌映射增强种群的多样性和全局搜索能力,避免早熟收敛,提高寻优精度和鲁棒性。
本文的结构安排如下:第二节回顾了粒子群优化算法和蝴蝶优化算法的基本原理;第三节详细阐述了混沌理论及其在优化算法中的应用;第四节提出了粒子群混沌混合蝴蝶优化算法(CPSBHOA)的原理和实现细节;第五节通过一系列标准测试函数对CPSBHOA的性能进行实验评估与分析,并与PSO、BOA以及其他改进算法进行比较;第六节对本文的研究进行总结,并展望未来的研究方向。
粒子群优化算法和蝴蝶优化算法回顾
2.1 粒子群优化算法(PSO)
粒子群优化算法(PSO)是一种模拟鸟群觅食行为的随机搜索算法。在PSO中,每个优化问题的潜在解被视为搜索空间中的一个“粒子”。每个粒子具有位置(代表一个解)和速度(代表移动方向和步长)。粒子根据自身经验(历史最佳位置 pbest)和群体经验(全局最佳位置 gbest)来更新其速度和位置。
PSO的优点在于其结构简单、易于实现,且在许多连续优化问题上表现良好。然而,标准PSO容易陷入局部最优,特别是在复杂多峰问题中。为了解决这一问题,研究人员提出了许多改进策略,如引入不同的惯性权重策略、动态调整学习因子、使用拓扑结构等。
2.2 蝴蝶优化算法(BOA)
蝴蝶优化算法(BOA)是一种模仿蝴蝶利用嗅觉寻找食物的行为的群智能算法。蝴蝶通过其触角感知空气中的气味浓度,气味越浓的地方通常离食物来源越近。BOA的核心思想是将优化问题的解空间视为蝴蝶的活动区域,目标函数值代表气味浓度。算法模拟蝴蝶在不同阶段的搜索行为。
在BOA中,每个蝴蝶代表一个潜在的解。算法首先初始化一定数量的蝴蝶,并根据其位置计算其“香味强度”(Fitness)。BOA定义了一个感知形态概率(Perceptual Form Probability, p),用于控制算法在全局搜索和局部搜索之间的切换。
BOA的优点在于其全局搜索能力较强,能够有效探索解空间。然而,BOA的收敛速度和精度在某些情况下可能不如PSO,且其参数设置对算法性能有一定影响。
混沌理论及其在优化算法中的应用
混沌是一种确定性系统中的非线性行为,其特点是对初值高度敏感,表现出看似随机但却遵循确定性规律的复杂动力学行为。混沌系统的这些特性,特别是其遍历性和非周期性,使得混沌序列具有良好的伪随机性,能够更全面地探索解空间。
将混沌系统引入优化算法中,主要目的是利用其遍历性和随机性来增强种群的多样性,避免算法陷入局部最优。常见的混沌映射包括 Logistic 映射、Tent 映射、Sine 映射等。
在优化算法中应用混沌理论的方法主要有以下几种:
- 混沌初始化:
使用混沌序列生成初始种群,以确保初始解的分布更加均匀和多样化。
- 混沌扰动:
在算法迭代过程中,当算法陷入局部最优或种群多样性下降时,使用混沌序列对部分个体进行扰动,帮助其跳出局部最优。
- 混沌参数控制:
利用混沌序列动态调整算法中的参数,例如PSO中的惯性权重或BOA中的感知形态概率,以提高算法的适应性。
将混沌理论与群智能算法相结合,可以有效弥补算法在多样性维持和局部最优逃逸方面的不足,从而提升算法的全局搜索能力和收敛性能。
粒子群混沌混合蝴蝶优化算法(CPSBHOA)
为了充分结合粒子群优化算法的局部搜索能力和蝴蝶优化算法的全局探索能力,并利用混沌理论增强种群多样性,本文提出了一种粒子群混沌混合蝴蝶优化算法(CPSBHOA)。CPSBHOA在PSO和BOA的基本框架下,引入了以下关键改进策略:
4.1 混合搜索机制
CPSBHOA的核心是采用一种混合搜索机制,将PSO和BOA的搜索策略有机结合。在每次迭代中,算法根据一定的规则或概率决定采用PSO的更新方式还是BOA的更新方式。本文提出一种基于迭代次数的自适应切换策略,在算法前期更侧重于BOA的全局探索,在算法后期逐渐转向PSO的局部精确搜索。具体而言,设置一个切换阈值 TswitchTswitch。当当前迭代次数 t≤Tswitcht≤Tswitch 时,更倾向于使用BOA的更新公式;当 t>Tswitcht>Tswitch 时,更倾向于使用PSO的更新公式。当然,也可以采用随机选择策略,以一定的概率在每次迭代中选择PSO或BOA的更新方式。
4.2 引入混沌映射增强多样性
为了解决PSO和BOA在迭代后期容易陷入局部最优和种群多样性下降的问题,CPSBHOA引入了混沌映射。具体而言,在算法初始化阶段,利用混沌映射(例如 Logistic 映射)生成初始种群,确保初始解在解空间中具有更好的分布性。此外,在每次迭代结束时,可以对种群中的部分表现较差的个体或对全局最优位置进行混沌扰动。如果经过混沌扰动后的个体表现更好,则替换原有个体或全局最优位置。这种混沌扰动能够帮助算法跳出局部最优,维持种群的多样性。
4.3 自适应参数调整
为了进一步提升算法的性能,CPSBHOA采用了自适应参数调整策略。例如,在PSO部分,可以采用随迭代次数非线性递减的惯性权重 ωω;在BOA部分,可以动态调整感知形态概率 pp,例如随着迭代次数的增加而减小,使得算法从全局搜索逐渐转向局部搜索。这些自适应参数能够使算法更好地适应不同阶段的搜索需求。
结论
本文提出了一种基于混沌理论的粒子群混沌混合蝴蝶优化算法(CPSBHOA),旨在结合粒子群优化算法的局部搜索能力和蝴蝶优化算法的全局探索能力,并利用混沌映射增强种群多样性。通过详细阐述CPSBHOA的算法原理、流程和关键改进策略,并通过一系列标准测试函数进行实验评估,本文得出以下主要结论:
-
CPSBHOA通过有机结合PSO和BOA的搜索机制,实现了全局探索和局部精确搜索的有效平衡。在算法前期更侧重于BOA的全局探索,后期逐渐转向PSO的局部搜索,提高了算法在不同搜索阶段的效率。
-
引入混沌映射,特别是用于初始种群生成和迭代过程中的混沌扰动,显著增强了种群的多样性,有效地避免了算法陷入局部最优,提高了算法的全局搜索能力和寻优精度。
-
自适应参数调整策略使得算法能够更好地适应不同的优化问题和搜索阶段,进一步提升了算法的性能。
-
实验结果表明,与标准PSO、标准BOA以及其他一些改进算法相比,CPSBHOA在多种复杂测试函数上均展现出更优越的寻优精度、更快的收敛速度和更强的鲁棒性。
总之,粒子群混沌混合蝴蝶优化算法(CPSBHOA)为解决复杂优化问题提供了一种有效的新方法,其优越的性能得益于PSO和BOA的有效结合以及混沌理论的应用。
未来工作展望
未来的研究工作可以从以下几个方面展开:
- 更灵活的混合机制:
探索更智能的混合搜索机制,例如基于种群多样性、收敛状态或问题特性的自适应切换策略,以进一步优化全局探索与局部搜索的平衡。
- 更有效的混沌应用:
研究不同类型的混沌映射及其在算法不同阶段的应用效果,探索更有效的混沌扰动策略和参数控制方法。
- 多目标优化:
将CPSBHOA扩展到多目标优化领域,研究其在处理多目标优化问题时的性能和适用性。
- 约束优化:
探索将CPSBHOA应用于约束优化问题的方法,例如通过罚函数法、可行性规则或专门的约束处理技术。
- 实际应用:
将CPSBHOA应用于实际工程问题中,例如机器学习模型的参数优化、路径规划、调度问题等,验证其在实际问题中的有效性。
- 理论分析:
对CPSBHOA的收敛性、全局搜索能力等进行更深入的理论分析。
⛳️ 运行结果
🔗 参考文献
[1] 黄思琦.基于无锂析出的锂离子电池安全优化充电研究[D].合肥学院,2023.
[2] 史彭珍,魏霞,谢丽蓉,等.基于Cubic映射混合粒子蝴蝶优化算法[J].计算机仿真, 2023, 40(11):324-330.
[3] 张孟健,汪敏,王霄,等.混合粒子群-蝴蝶算法的WSN节点部署研究[J].计算机工程与科学, 2022, 44(6):10.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇