✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
高光谱图像(Hyperspectral Images, HSIs)作为一种多维数据,在成像的每个空间像素处捕获了数百个窄而连续的光谱波段信息。这种丰富的光谱维度使得高光谱图像能够更精细地区分地物类型,在遥感、农业、环境监测、矿产勘探等领域展现出巨大的应用潜力。然而,高光谱图像的高维度特性也带来了“维数灾难”问题,并使得其分类任务面临诸多挑战。传统的高光谱图像分类方法,如支持向量机(SVM)、随机森林等,往往依赖于手工提取的特征,难以充分挖掘高光谱图像深层的空间-光谱联合信息,分类精度提升受到限制。近年来,深度学习技术,特别是卷积神经网络(Convolutional Neural Networks, CNNs),凭借其强大的特征提取能力,在高光谱图像分类领域取得了显著进展。
卷积神经网络的兴起与在高光谱图像分类中的应用
卷积神经网络是一种专门处理具有网格状拓扑数据的深度学习模型,通过卷积层、池化层、激活函数等结构,能够自动学习数据中的多尺度、层次化特征。相较于传统方法,CNNs在高光谱图像分类中的优势主要体现在:
- 强大的特征学习能力:
CNNs无需手动设计特征,能够直接从原始高光谱数据中学习具有判别性的空间-光谱联合特征,有效克服了“维数灾难”问题。
- 空间信息利用:
通过二维或三维卷积操作,CNNs能够有效捕捉像素邻域的空间上下文信息,将空间信息与光谱信息相结合,提升分类精度。
- 端到端学习:
CNNs模型可以实现从原始数据到分类结果的端到端学习,简化了传统方法的流程,提高了效率。
早期的基于CNN的高光谱图像分类方法通常将每个像素点的高光谱向量作为一个“光谱特征向量”,然后将这些向量输入到一维CNN中进行分类。然而,这种方法忽略了像素之间的空间关系。为了有效利用空间信息,后续研究提出了基于二维或三维CNN的方法。基于二维CNN的方法通常将高光谱图像的每个波段视为一个灰度图像,然后通过二维CNN进行特征提取和分类。为了更好地融合空间和光谱信息,一些方法将多个波段堆叠成一个“图像立方体”,然后利用三维CNN对这个立方体进行处理。三维CNN能够同时在空间和光谱维度进行卷积操作,更充分地挖掘空间-光谱联合特征,取得了更好的分类效果。
尽管基于CNN的方法在高光谱图像分类中取得了显著进展,但其性能的发挥往往高度依赖于大规模的标记样本。在高光谱图像分类任务中,获取高质量的标记样本通常需要耗费大量的人力和物力,且标记过程依赖于专家的先验知识,存在主观性。因此,在实际应用中,往往面临标记样本稀缺的问题,这限制了深度学习模型的性能。
主动学习:缓解标记样本稀缺的有效途径
主动学习(Active Learning)是一种机器学习范式,其目标是在标记样本有限的情况下,通过策略性地选择最有信息量的未标记样本进行标记,从而以最小的标记成本达到理想的模型性能。在高光谱图像分类中引入主动学习,可以有效缓解标记样本稀缺的问题。
主动学习的核心在于“查询策略”(Query Strategy),即如何选择最有价值的未标记样本。常见的查询策略包括:
- 不确定性采样(Uncertainty Sampling):
选择模型当前分类置信度最低的样本进行标记。这类样本通常位于决策边界附近,对模型的学习最有帮助。常用的度量不确定性的方法包括最小置信度(Least Confidence)、熵(Entropy)和边缘距离(Margin Distance)。
- 多样性采样(Diversity Sampling):
选择具有代表性或与已标记样本差异较大的样本进行标记。这类样本有助于探索新的数据区域,避免模型陷入局部最优。
- 基于委员会的查询(Query by Committee, QBC):
训练一个由多个模型组成的委员会,选择这些模型预测结果差异最大的样本进行标记。差异越大,说明样本越具有争议性,对模型的学习越有益。
将主动学习与卷积神经网络相结合,可以形成一种更强大的高光谱图像分类框架。在这种框架下,CNN模型作为基础分类器,通过主动学习策略不断迭代地选择未标记样本进行标记和训练。具体流程通常如下:
- 初始化:
使用少量已标记样本训练初始的CNN模型。
- 查询:
使用训练好的CNN模型对大量的未标记样本进行预测,并根据某种主动学习查询策略选择最有价值的未标记样本。
- 标记:
将选中的未标记样本提交给专家进行标记,获取其真实类别标签。
- 再训练:
将新标记的样本添加到已标记样本集中,并重新训练或微调CNN模型。
- 循环:
重复步骤2-4,直到达到预定的标记预算或模型性能要求。
基于CNN和主动学习的高光谱图像分类方法能够充分结合CNN强大的特征提取能力和主动学习在样本选择上的优势,以更少的标记样本获得更高的分类精度。
基于卷积神经网络和主动学习的高光谱图像分类研究进展
近年来,基于CNN和主动学习的高光谱图像分类研究取得了许多进展。研究人员提出了各种创新的主动学习查询策略和模型结构,以进一步提升分类性能。
- 深度主动学习(Deep Active Learning):
将主动学习的思想直接应用于深度学习模型中,例如,利用CNN模型的中间层特征或损失函数信息设计查询策略。一些方法利用Dropout机制来近似模型的预测不确定性。
- 多尺度主动学习:
考虑到高光谱图像中不同地物可能具有不同的空间尺度,研究人员提出了多尺度的主动学习策略,以便更好地选择具有代表性的样本。
- 结合空间上下文的主动学习:
在选择未标记样本时,不仅考虑单个像素的信息,还考虑其空间邻域的信息,以选择具有空间代表性的样本。
- 异构主动学习:
结合多种主动学习查询策略,或者结合监督学习和半监督学习的方法,以更有效地利用未标记数据。
- 面向特定任务的主动学习:
针对特定的高光谱图像分类任务,设计定制化的主动学习策略,例如,针对小样本类别的主动学习。
除了查询策略的研究,模型的结构设计也至关重要。为了更好地支持主动学习,一些研究在CNN模型中加入了不确定性估计模块。此外,一些研究也探索了如何利用无监督或半监督的方法来辅助主动学习过程,例如,利用聚类、生成模型等方法来更好地理解未标记数据的分布。
挑战与未来方向
尽管基于CNN和主动学习的高光谱图像分类取得了显著进展,但仍面临一些挑战和未来的研究方向:
- 查询策略的泛化性:
当前的主动学习查询策略往往针对特定的数据集和模型进行设计,其泛化能力有待提升。未来的研究可以探索设计更具普适性的查询策略,能够适应不同的数据集和模型。
- 计算效率:
主动学习过程通常涉及对大量未标记样本进行预测和评估,计算量较大,尤其是在处理大规模高光谱图像时。未来的研究可以探索更高效的查询策略和模型优化方法,以提高主动学习的计算效率。
- 理论分析:
当前对深度主动学习的理论分析相对较少,缺乏对主动学习过程中模型性能提升的理论解释。未来的研究可以加强对深度主动学习的理论分析,为查询策略的设计提供理论指导。
- 结合其他深度学习技术:
未来可以将主动学习与生成对抗网络(GANs)、注意力机制(Attention Mechanisms)等其他深度学习技术相结合,进一步提升高光谱图像分类的性能。
- 面向复杂场景的主动学习:
实际高光谱图像数据往往存在噪声、混合像元等问题,未来的研究可以探索面向复杂场景的主动学习方法,以提高模型的鲁棒性。
- 多模态数据融合:
将高光谱图像与其他模态的数据(如LiDAR数据、可见光图像等)进行融合,并在此基础上研究主动学习方法,能够更全面地利用多源信息,提升分类精度。
结论
基于卷积神经网络和主动学习的高光谱图像分类方法是一种有效的解决方案,能够克服传统方法在高光谱图像分类中面临的挑战,并在标记样本稀缺的情况下取得优异的分类性能。CNN强大的特征提取能力与主动学习高效的样本选择策略相结合,为高光谱图像的精准分类提供了新的思路和方法。尽管仍面临一些挑战,但随着深度学习和主动学习技术的不断发展,相信未来基于CNN和主动学习的高光谱图像分类方法将在理论研究和实际应用中取得更大的突破,为遥感、农业、环境等领域的智能化应用提供有力支持。
⛳️ 运行结果
🔗 参考文献
[1] 罗建华,李明奇,郑泽忠,等.基于深度卷积神经网络的高光谱遥感图像分类[J].西华大学学报:自然科学版, 2017, 36(4):8.DOI:10.3969/j.issn.1673-159X.2017.04.003.
[2] 付光远,辜弘炀,汪洪桥.基于卷积神经网络的高光谱图像谱-空联合分类[J].科学技术与工程, 2017, 17(21):7.DOI:CNKI:SUN:KXJS.0.2017-21-043.
[3] 吕龙龙,卢伟,秦丽娜.MS-2HCNN:基于深度学习的高光谱图像信号分类方法[J].传感技术学报, 2024, 37(1):111-120.DOI:10.3969/j.issn.1004-1699.2024.01.016.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇