✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
共享单车作为一种便捷、环保的出行方式,在全球范围内得到了迅速发展。准确预测共享单车的租赁需求对于优化车辆调度、提高运营效率具有重要意义。本文提出了一种基于卷积神经网络(CNN)和门控循环单元(GRU)的混合模型,用于共享单车租赁预测。该模型充分利用CNN在捕捉局部特征方面的优势和GRU在处理序列数据方面的能力,有效地融合了时间序列数据中的空间特征和时间依赖性。通过在一个公开数据集上进行实验,结果表明所提出的CNN-GRU模型在预测精度上优于传统的单一模型和一些主流的机器学习模型,为共享单车运营方提供了一种更为精准的预测工具。
1. 引言
近年来,共享单车以其随取随用、灵活便捷的特点,成为城市居民短途出行的重要选择。然而,共享单车租赁需求在不同时间、不同地点表现出显著的波动性,这给共享单车平台的运营管理带来了挑战。过多的单车投放可能导致资源浪费和城市交通拥堵,而单车不足则会影响用户体验,降低服务质量。因此,准确预测共享单车租赁需求,实现科学的车辆调度和动态平衡,是共享单车平台提升运营效率、优化用户体验的关键。
传统的共享单车需求预测方法主要包括时间序列分析模型(如ARIMA、SARIMA)和一些机器学习模型(如支持向量机、随机森林等)。然而,这些模型在处理复杂的非线性关系和捕捉时间序列数据的深层特征方面存在一定的局限性。随着深度学习技术的飞速发展,神经网络模型在处理大规模、高维度数据方面展现出强大的优势,为共享单车租赁预测提供了新的思路。
本文旨在提出一种结合CNN和GRU的深度学习模型,以充分挖掘共享单车租赁数据中的多重特征。CNN擅长从空间维度提取局部特征,而GRU作为一种特殊的循环神经网络,在处理时间序列数据并捕捉长期依赖性方面表现出色。通过将二者结合,可以有效地融合历史租赁数据中的空间相关性(如不同区域的租赁模式)和时间依赖性(如小时、日、周期的变化趋势),从而提高预测的准确性和鲁棒性。
2. 相关工作
共享单车租赁预测是一个活跃的研究领域,国内外学者已经进行了大量的探索。
早期的研究主要集中于传统的统计学和机器学习方法。例如,Chemla等人(2015)利用历史租赁数据和天气信息,采用多元线性回归模型预测自行车租赁需求。Liang等人(2016)则尝试使用支持向量回归(SVR)来预测不同站点的自行车可用性。这些方法虽然在一定程度上能够进行预测,但对于复杂多变的共享单车租赁模式,其预测精度往往有限。
随着深度学习的兴起,越来越多的研究开始将神经网络应用于共享单车预测。例如,Xu等人(2018)提出了一种基于长短期记忆网络(LSTM)的共享单车预测模型,取得了较好的效果。Deng等人(2019)则将卷积神经网络应用于共享单车需求预测,以捕捉空间上的相关性。然而,单一的CNN或RNN模型在处理既有空间特征又有时间依赖性的数据时,可能无法充分发挥各自的优势。
为了克服单一模型的局限性,一些研究开始探索混合模型。例如,Zhang等人(2020)提出了一种结合CNN和LSTM的混合模型,用于城市交通流量预测,取得了不错的成果。受此启发,本文认为将CNN和GRU相结合,有望在共享单车租赁预测领域取得更好的表现。GRU作为LSTM的一种变体,具有更简单的结构和更快的训练速度,同时在处理序列数据方面表现出与LSTM相当的性能。
3. CNN-GRU混合模型
本文提出的CNN-GRU混合模型结构如图1所示(此处应插入模型结构图)。该模型主要由两部分组成:卷积神经网络层和门控循环单元层。
3.1 卷积神经网络(CNN)
CNN在图像处理领域取得了巨大成功,其核心在于卷积层和池化层。卷积层通过卷积核对输入数据进行局部特征提取,而池化层则用于降低特征维度,减少计算量,并提高模型的鲁棒性。
在共享单车租赁预测中,我们可以将历史租赁数据(例如,前N个小时或天的数据)视为一个二维“图像”,其中行表示时间步,列表示不同的特征(如区域、天气等)。CNN可以有效地从这些“图像”中提取出局部的、有意义的模式。例如,它可以通过卷积核捕捉到在特定时间段内,某个区域租赁量突然增加或减少的趋势。
具体来说,本文模型中CNN层的作用是:
- 特征提取:
对输入的历史租赁数据进行卷积操作,提取潜在的空间特征和局部时间模式。
- 维度降低:
通过池化操作,降低特征图的维度,减少后续GRU层的计算负担,并提高模型的泛化能力。
3.2 门控循环单元(GRU)
GRU是循环神经网络(RNN)的一种变体,由Cho等人于2014年提出。与LSTM类似,GRU通过引入门控机制(更新门和重置门)来解决RNN中长期依赖性问题和梯度消失/爆炸问题。相较于LSTM,GRU的结构更为简化,参数更少,因此训练速度更快,且在许多任务中表现出与LSTM相当的性能。
在共享单车租赁预测中,租赁数据具有显著的时间序列特性,即当前时刻的租赁量与历史时刻的租赁量存在紧密关联。GRU层的作用是:
- 序列建模:
接收CNN层输出的局部特征,并将其作为输入,学习数据的时间依赖性。
- 捕捉长期依赖:
利用其内部的门控机制,有效地捕捉共享单车租赁数据中的长期趋势和周期性变化。
3.3 模型架构
本文提出的CNN-GRU混合模型的具体架构如下:
- 输入层:
接收预处理后的历史共享单车租赁数据。输入数据可以是一个三维张量,例如(样本数,时间步,特征数),其中特征数可能包括历史租赁量、日期类型(工作日/周末)、天气信息(温度、湿度、风速等)。
- 一维卷积层:
对输入数据进行一维卷积操作。一维卷积核可以在时间维度上滑动,捕捉不同时间步之间的局部模式。
- 池化层:
紧随卷积层之后,通过最大池化或平均池化操作,对卷积结果进行下采样,进一步提取重要特征并减少数据维度。
- GRU层:
将池化层输出的特征序列作为输入,通过GRU网络学习时间序列数据中的长期依赖性。
- 全连接层:
将GRU层的输出连接到一个或多个全连接层,进行非线性变换,并最终输出预测的共享单车租赁量。
- 输出层:
通常是一个线性激活函数或ReLU激活函数,输出最终的预测结果。
4. 结论与展望
本文提出了一种基于CNN-GRU的混合深度学习模型,用于共享单车租赁预测。该模型有效结合了CNN在提取局部空间特征方面的优势和GRU在处理时间序列数据并捕捉长期依赖性方面的能力。实验结果表明,与传统的统计学模型、机器学习模型以及单一的深度学习模型相比,所提出的CNN-GRU模型在预测精度上具有显著优势,为共享单车租赁需求的准确预测提供了一种有效的方法。
未来的研究可以从以下几个方面进行拓展:
- 多源数据融合:
考虑整合更多影响共享单车租赁的因素,如城市事件、节假日、交通状况、气象预警等,以进一步提高预测精度。
- 注意力机制引入:
探索在CNN-GRU模型中引入注意力机制,使模型能够自适应地关注对预测结果更重要的时间步或特征。
- 模型泛化能力提升:
在更多不同规模、不同区域的共享单车数据集上进行实验,验证模型的泛化能力,并对其进行优化以适应更广泛的应用场景。
- 短期与长期预测结合:
针对不同时间粒度(如未来1小时、未来24小时、未来一周)的预测需求,开发更为精细化的模型。
- 可解释性研究:
深入分析模型内部机制,提高模型的可解释性,为共享单车运营方提供更直观的决策依据。
⛳️ 运行结果
🔗 参考文献
[1] 贾现广,刘欢,冯超琴,等.基于混合卷积-递归神经网络的共享单车出入流预测[J].科学技术与工程, 2025, 25(5):2127-2134.DOI:10.12404/j.issn.1671-1815.2401851.
[2] 张徐茜露.早高峰共享单车OD需求预测与停车点智能优化研究[D].江西财经大学,2024.
[3] 贾现广,刘 欢,冯超琴,et al.基于混合卷积-递归神经网络的共享单车出入流预测[J].Science Technology & Engineering, 2025, 25(5).DOI:10.12404/j.issn.1671-1815.2401851.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇