【广义 OFDM 传输模型】具有通道效果的OFDM传输系统附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

正交频分复用(OFDM)技术自问世以来,因其高效利用频谱、抗多径衰落和抗窄带干扰的优点,已成为现代无线通信系统的基石。本文旨在深入探讨广义 OFDM 传输模型,并重点分析通道效应对 OFDM 系统性能的影响。我们将首先建立一个涵盖发射端、通道和接收端的广义 OFDM 传输模型,并详细阐述其中关键模块的功能和数学描述。接着,文章将着重分析不同通道效应,包括加性高斯白噪声(AWGN)、多径衰落(包括频率选择性衰落和时间选择性衰落)以及干扰对 OFDM 信号的影响。最后,我们将讨论常见的应对通道效应的技术,例如通道估计与均衡、编码与交织等,并展望未来广义 OFDM 传输模型在复杂通信环境下的发展趋势。

关键词: OFDM;广义传输模型;通道效应;多径衰落;通道估计;均衡

1. 引言

随着信息技术的飞速发展,无线通信系统对传输速率、可靠性和频谱效率的需求日益增长。传统的单载波调制技术在面对复杂的无线传输环境时,如城市峡谷、室内环境或高速移动场景,往往难以满足性能要求。OFDM 技术通过将高速数据流分解成多个并行传输的低速数据流,并将每个子载波独立调制并正交化,有效克服了传统单载波系统对多径衰落的敏感性。其核心思想在于利用快速傅里叶变换(FFT)和逆快速傅里叶变换(IFFT)在时域和频域之间进行转换,将频域上的多径衰落转化为时域上的信道脉冲响应的卷积,从而简化了均衡器的设计。

然而,实际的无线传输环境远非理想,各种通道效应始终存在,对OFDM系统的性能构成严峻挑战。理解并准确建模这些通道效应,以及开发有效的应对策略,是设计高性能OFDM系统的关键。本文将超越简单的理想OFDM模型,构建一个更具普适性的广义OFDM传输模型,并在此框架下详细分析各种通道效应的影响,从而为理解和改进OFDM系统的抗干扰和抗衰落能力提供理论基础。

2. 广义 OFDM 传输模型

一个完整的OFDM传输系统通常包含发射端、通道和接收端。广义OFDM传输模型旨在更全面地描述信号在这些环节中经历的变换和劣化。图1给出了一个简化的广义OFDM传输模型框图。

[图1:广义OFDM传输模型框图]

2.1 发射端

发射端的主要功能是将待发送的数字比特流转换成适合OFDM传输的模拟信号。其关键模块包括:

  • 信源编码与调制:

     将原始数字比特流进行信源编码以去除冗余,然后进行星座图映射,将比特分组映射到复数符号。常见的调制方式包括QAM、PSK等。对于OFDM系统,通常在每个子载波上独立进行调制。

  • 串并转换:

     将高速串行数据流转换为多个并行的低速数据流,每个数据流对应一个子载波。

  • IFFT(逆快速傅里叶变换):

     这是OFDM系统的核心操作。将频域上的调制符号序列进行IFFT,得到时域上的OFDM符号。IFFT操作使得不同子载波的信号在时域上相互正交。

  • 加入循环前缀(CP):

     为了消除符号间干扰(ISI)和子载波间干扰(ICI)是由通道多径引起的,在每个OFDM符号前复制其后一部分数据作为循环前缀。CP的长度通常大于通道的最大时延扩展。加入CP后的OFDM符号长度为N+LCPN+LCP,其中LCPLCP为CP的长度。

  • 并串转换:

     将并行的OFDM符号序列转换为串行数据流。

  • 上变频与功率放大:

     将基带OFDM信号上变频到射频,并进行功率放大,以满足传输距离的要求。

2.2 通道

无线通道是一个复杂且动态的环境,对传输信号造成各种损伤。广义OFDM传输模型中的通道模块需要考虑以下主要效应:

  • 加性高斯白噪声 (AWGN):

     这是最基本的噪声模型,由热噪声等引起,在频域上均匀分布,服从高斯分布。AWGN是限制通信系统性能的基本因素。接收到的信号可以表示为发送信号加上AWGN。

  • 多径衰落:

     信号通过不同的路径到达接收端,这些路径具有不同的时延和衰减。多径效应会导致信号在时间上展宽,引起符号间干扰(ISI)。在频域上,多径效应表现为频率选择性衰落,即不同频率成分的信号经历不同的衰落。
    对于OFDM系统而言,如果最大时延扩展小于CP的长度,则多径效应只会导致各子载波独立地经历衰落和相位旋转,从而避免ISI。然而,如果最大时延扩展大于CP长度,则会引起ISI和ICI。

  • 时间选择性衰落(多普勒效应):

     当发射端、接收端或周围环境存在相对运动时,信号的频率会发生偏移,即多普勒效应。多普勒效应导致通道的脉冲响应随时间变化,引起子载波间的干扰(ICI)。多普勒频移的大小取决于相对速度和载波频率。

  • 干扰:

     包括同信道干扰、邻信道干扰以及其他无线设备的干扰。这些干扰通常表现为加性噪声,但其统计特性可能与AWGN不同。

2.3 接收端

接收端的功能是将接收到的劣化信号恢复成原始的数字比特流。其主要模块包括:

  • 下变频与低通滤波:

     将接收到的射频信号下变频到基带,并进行低通滤波以滤除带外噪声。

  • 串并转换:

     将串行接收到的OFDM符号序列转换为并行数据流。

  • 去除循环前缀:

     移除每个OFDM符号前的循环前缀。

  • FFT(快速傅里叶变换):

     这是OFDM系统的另一核心操作。对时域上的OFDM符号进行FFT,将其转换到频域。FFT操作将时域上的卷积(由多径引起)转换为频域上的乘法,从而简化了均衡。设接收到的时域

  • 通道估计与均衡:

     这是应对通道效应的关键环节。通道估计用于获取每个子载波的通道频率响应HkHk。基于通道估计结果,均衡器通过对接收到的频域符号YkYk进行处理,抵消通道的衰落和相位旋转,恢复原始发送符号XkXk的估计值X^kX^k。

  • 解调与信源译码:

     对恢复的频域符号进行解调,将复数符号映射回数字比特,然后进行信源译码,恢复原始的数字比特流。

  • 并串转换:

     将并行的数字比特流转换为串行输出。

3. 通道效应对 OFDM 系统的影响

不同的通道效应会对OFDM系统的性能产生不同程度的影响:

3.1 加性高斯白噪声 (AWGN)

AWGN会增加接收信号中的随机分量,导致接收符号偏离其理想位置,增加误码率。AWGN的影响主要体现在信噪比(SNR)上。SNR越高,噪声对信号的影响越小,误码率越低。在频域上,AWGN在所有子载波上均匀分布。

3.2 多径衰落

如前所述,多径衰落是OFDM系统面临的主要挑战之一。

  • 符号间干扰 (ISI):

     当最大时延扩展大于CP长度时,前一个OFDM符号的尾部会与当前OFDM符号的头部发生重叠,导致ISI。ISI使得不同符号之间不再独立,严重劣化系统性能。

  • 频率选择性衰落:

     在频域上,多径效应导致不同子载波经历不同的衰落和相位旋转。某些子载波可能经历深衰落,导致其上的信号能量极低,难以正确解调。这种频率选择性衰落是造成误码的主要原因之一。

  • 子载波间干扰 (ICI):

     当通道的时延扩展大于CP长度时,或者存在时变通道(如多普勒效应),原本正交的子载波之间会产生干扰,即ICI。ICI使得接收到的频域符号不再仅仅是对应发送符号乘以通道频率响应,而是多个子载波信号的线性组合,增加了均衡的难度。

3.3 时间选择性衰落 (多普勒效应)

多普勒效应导致通道的时变性,使得通道频率响应随时间变化。在FFT周期内,如果通道变化显著,就会破坏子载波的正交性,引起ICI。高速移动场景下的OFDM系统对多普勒效应尤其敏感。

3.4 干扰

各种干扰会叠加到接收信号上,降低信噪比,恶化系统性能。干扰的特性取决于其来源,可能具有特定的频率范围或时间特性。

4. 应对通道效应的技术

为了提高OFDM系统在复杂通道环境下的性能,需要采用一系列技术来抵消或减轻通道效应的影响。在广义OFDM传输模型中,这些技术通常集成在接收端。

4.1 通道估计与均衡

通道估计是获取通道状态信息(CSI)的关键步骤。常用的通道估计方法包括:

  • 基于导频的通道估计:

     在OFDM符号中插入已知的导频符号,接收端利用这些导频符号来估计通道频率响应。导频的放置方式可以是块状(在特定OFDM符号的所有子载波上)或梳状(在特定子载波的所有OFDM符号上)。

  • 基于盲的通道估计:

     利用接收信号的统计特性进行通道估计,不需要发送额外的导频。

  • 基于半盲的通道估计:

     结合导频和接收信号的统计特性进行通道估计。

在获取通道估计值后,均衡器利用这些信息来抵消通道的衰落和相位旋转。如前所述,ZF和MMSE是常见的频域均衡技术。ZF均衡器简单,但在低信噪比下会放大噪声;MMSE均衡器在兼顾信号和噪声的情况下,性能优于ZF均衡器,但需要知道噪声功率。

4.2 编码与交织

信道编码和交织是提高OFDM系统抗干扰和抗衰落能力的重要手段。

  • 信道编码:

     在发送端对信息比特进行编码,加入冗余比特,使得接收端能够检测和纠正错误。常见的信道编码技术包括卷积码、Turbo码、LDPC码等。信道编码将误码分散到多个子载波上,提高了系统的抗衰落能力。

  • 交织:

     在信道编码后对编码比特进行重新排列。交织可以分散突发错误,使得信道编码器更容易纠正错误。在OFDM系统中,交织通常在子载波之间进行,将经历深衰落的子载波上的错误分散到其他子载波上。

4.3 其他技术

除了上述核心技术外,还有一些其他技术可以用于进一步提升OFDM系统性能:

  • 自适应调制与编码 (AMC):

     根据通道状态信息动态调整调制方式和编码速率,以在保证可靠性的前提下最大化传输速率。

  • 多输入多输出 (MIMO) 技术:

     利用多个发射天线和多个接收天线来提高系统的容量和可靠性。MIMO与OFDM结合形成MIMO-OFDM系统,是现代无线通信的关键技术。

  • 循环前缀的优化:

     合理选择CP长度,在满足消除ISI要求的前提下尽量减小CP带来的开销。

  • 峰均功率比 (PAPR) 抑制:

     OFDM信号具有较高的PAPR,这会降低功放效率并引起非线性失真。PAPR抑制技术旨在降低OFDM信号的峰均功率比。

5. 广义 OFDM 传输模型在复杂通信环境下的发展趋势

随着通信技术的不断演进,未来OFDM系统将在更加复杂的通信环境中运行,例如物联网(IoT)、V2X通信、无人机通信等。这些场景对OFDM系统的性能提出了新的挑战,同时也推动了广义OFDM传输模型的发展:

  • 考虑更复杂的通道模型:

     未来需要考虑更加精细的通道模型,包括非线性和时变性更强的通道、非高斯噪声、干扰源的特殊性质等。

  • 智能化与自适应化:

     OFDM系统将更加智能化,能够感知通道环境的变化,并自适应地调整传输参数、通道估计和均衡算法。

  • 与新兴技术的融合:

     广义OFDM模型将与人工智能、机器学习、边缘计算等新兴技术深度融合,以实现更高效、更可靠的通信。例如,利用机器学习进行更精确的通道预测和干扰识别。

  • 资源分配优化:

     在多用户和多蜂窝场景下,需要考虑更复杂的资源分配问题,例如子载波分配、功率分配等,以最大化系统吞吐量或满足特定的服务质量要求。广义模型需要能够反映资源分配对系统性能的影响。

  • 安全性与隐私保护:

     未来OFDM系统需要考虑如何在复杂的通道环境下保证通信的安全性和用户隐私。

6. 结论

本文深入探讨了具有通道效果的广义OFDM传输模型。我们详细阐述了发射端、通道和接收端的关键模块和数学描述,并重点分析了AWGN、多径衰落、时间选择性衰落和干扰等通道效应对OFDM系统性能的影响。同时,我们讨论了应对这些通道效应的关键技术,包括通道估计与均衡、编码与交织等。

理解广义OFDM传输模型及其与通道效应的相互作用,对于设计和优化高性能OFDM系统至关重要。未来,随着通信环境的日益复杂,广义OFDM传输模型将不断发展,融入更多先进技术,以应对新的挑战,为构建更加高效、可靠、智能的未来通信系统奠定坚实基础。

⛳️ 运行结果

🔗 参考文献

[1] 郝宇霆,忻向军.变速率OFDM光传输系统的仿真实现[J].新型工业化, 2012, 000(008):1-6.DOI:10.3969/j.issn.2095-6649.2012.08.001.

[2] 任喆.OFDM基带数据传输系统及其FPGA设计与实现研究[D].大连海事大学,2009.DOI:CNKI:CDMD:2.2008.209794.

[3] 范佳佳.基于Matlab的OFDM系统信道评估设计[D].东华大学,2016.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值