✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
状态估计是控制、导航、信号处理等诸多领域的核心问题,旨在通过带有噪声的量测数据推断系统内部的未知状态。经典的线性高斯系统状态估计算法——卡尔曼滤波(Kalman Filter, KF)因其简洁的数学结构和最优的线性估计性能而被广泛应用。然而,卡尔曼滤波的性能严重依赖于对系统过程噪声和量测噪声协方差矩阵的准确知晓。在实际应用中,这些噪声统计特性往往是未知或时变的,导致卡尔曼滤波性能下降甚至发散。
为了克服卡尔曼滤波对噪声先验知识的依赖,研究人员提出了许多噪声自适应滤波算法。这些方法的核心思想是通过利用量测残差或其他统计信息在线估计或调整噪声协方差。常见的自适应卡尔曼滤波方法包括残差协方差匹配、最大似然估计、贝叶斯估计等。其中,贝叶斯估计提供了一个理论上严谨的框架,将噪声协方差作为随机变量处理,并通过贝叶斯推理更新其后验分布。然而,精确的贝叶斯推理通常涉及高维积分计算,计算复杂度极高。
近年来,变分贝叶斯(Variational Bayes, VB)方法作为一种近似贝叶斯推理技术,因其计算效率和理论完备性受到广泛关注。变分贝叶斯的核心思想是将复杂的后验分布近似为一个易于处理的分布族中的成员,并通过最小化 Kullback-Leibler (KL) 散度来找到最优的近似分布。将变分贝叶斯应用于状态估计问题,可以有效地处理噪声不确定性,并在计算复杂度上优于传统的基于 MCMC 等方法的贝叶斯推理。
本文将深入探讨一种基于变分贝叶斯近似的递归噪声自适应卡尔曼滤波方法。该方法将状态和噪声协方差作为联合估计变量,并利用变分贝叶斯迭代更新其后验分布。通过将复杂的高维后验分布分解为若干易于处理的低维分布的乘积(均值场近似),变分贝叶斯方法能够在递归计算中有效地近似噪声协方差的后验分布,从而实现噪声的在线自适应估计。
1. 变分贝叶斯迭代更新
在变分贝叶斯框架下,通过固定其他近似分布来迭代更新某个变量的近似分布,可以得到最优的近似分布形式。
在实际应用中,我们需要为噪声协方差选择合适的先验分布和近似分布族。常用的噪声协方差先验分布包括逆Wishart分布或逆Gamma分布,它们是协方差矩阵或方差的共轭先验,能够方便地进行贝叶斯更新。对于近似分布族,我们通常选择与先验分布具有相同形式的分布族。例如,如果选择逆Wishart先验,则选择逆Wishart分布族作为近似分布族。
具体的变分贝叶斯递归噪声自适应卡尔曼滤波算法流程如下(以线性系统和高斯噪声为例,非线性系统需要借助扩展卡尔曼滤波或无迹卡尔曼滤波等方法):
变分贝叶斯迭代更新:
在当前时间步 kk,利用量测量 zkzk 对状态 xkxk、过程噪声协方差 QkQk 和量测噪声协方差 RkRk 进行联合变分贝叶斯更新。这个更新过程通常是一个迭代过程,在每次迭代中更新一个变量的近似分布,直到收敛或达到最大迭代次数。
2. 变分贝叶斯递归噪声自适应卡尔曼滤波的优势与挑战
优势:
- 噪声自适应能力:
能够在线估计和调整未知或时变的噪声协方差,提高滤波精度和鲁棒性。
- 理论完备性:
基于贝叶斯推理框架,具有坚实的理论基础。
- 计算效率:
相较于精确的贝叶斯推理方法(如 MCMC),变分贝叶斯通过优化降低了计算复杂度,适用于实时或近实时应用。
- 处理非高斯噪声和非线性系统潜力:
虽然本文以线性高斯系统为例,但变分贝叶斯框架可以扩展到处理非高斯噪声和非线性系统,例如结合粒子滤波或高斯过程等方法。
- 提供不确定性度量:
变分贝叶斯能够提供对状态和噪声协方差的近似后验分布,从而量化估计的不确定性。
挑战:
- 模型假设的依赖:
变分贝叶斯近似的准确性很大程度上依赖于选择的近似分布族和分解形式。如果真实后验分布与假设的近似分布族差异较大,可能导致较大的近似误差。
- 计算复杂性:
尽管相对于精确贝叶斯推理有所降低,变分贝叶斯仍然比标准卡尔曼滤波更复杂,需要额外的迭代计算。
- 收敛性问题:
变分贝叶斯迭代过程的收敛性可能受初始化、步长等因素影响。
- 参数选择:
选择合适的先验分布参数和变分贝叶斯迭代次数需要经验或额外的调优。
- 对强非线性和多模态分布的处理:
对于具有强非线性或多模态后验分布的问题,简单的均值场近似可能不足,需要更复杂的变分贝叶斯技巧或与其他方法结合。
3. 应用前景
基于变分贝叶斯近似的递归噪声自适应卡尔曼滤波方法在诸多领域具有广阔的应用前景,包括:
- 导航与定位:
在 GPS 信号丢失、传感器故障或环境变化导致噪声特性改变的情况下,能够自适应地估计噪声协方差,提高导航精度。
- 机器人感知与控制:
机器人状态估计、地图构建等任务中,传感器噪声和环境噪声往往未知且时变,该方法能够提升系统的鲁棒性。
- 工业过程监控:
在工业生产过程中,设备故障或工况变化可能导致测量噪声和模型误差变化,自适应滤波能够提供更准确的状态信息,用于故障诊断和预测控制。
- 金融预测:
金融市场数据通常具有时变的噪声特性,该方法可以用于更鲁棒的金融状态估计和预测。
- 生物医学工程:
生理信号测量往往伴随复杂的噪声,自适应滤波有助于提取更准确的生理状态信息。
4. 总结
变分贝叶斯近似为递归噪声自适应卡尔曼滤波提供了一个强大的框架。通过将噪声协方差作为随机变量并利用变分贝叶斯迭代更新其后验分布,该方法能够有效地处理噪声不确定性,提高状态估计的精度和鲁棒性。尽管存在计算复杂性和对模型假设的依赖等挑战,但随着计算能力的提升和算法的不断改进,变分贝叶斯递归噪声自适应卡尔曼滤波有望在未来更多实际应用中发挥重要作用。未来的研究方向可以包括探索更灵活的近似分布族和分解形式、与其他非线性滤波方法的结合、以及将变分贝叶斯应用于处理其他不确定性来源(如模型参数不确定性)等。
⛳️ 运行结果
🔗 参考文献
[1] 徐定杰,沈忱,沈锋.时变有色观测噪声下基于变分贝叶斯学习的自适应卡尔曼滤波[J].电子与信息学报, 2013, 35(7):6.DOI:10.3724/SP.J.1146.2012.01457.
[2] 张勇刚,贾广乐,黄玉龙,等.一种带有色量测噪声和变分贝叶斯自适应卡尔曼滤波的目标跟踪方法:CN201910032588.1[P].CN109508445A[2025-05-02].
[3] 石朗平,李荣冰,赖际舟,等.基于多重渐消因子变分贝叶斯的陀螺阵列融合算法[J].电子测量技术, 2023, 46(12):42-47.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇