基于VMD-LSTM-IOWA-RBF的碳排放混合预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

全球气候变暖已成为人类社会面临的最严峻挑战之一,其核心在于温室气体排放,尤其是二氧化碳。准确预测碳排放趋势对于制定有效的减排政策、推动经济社会可持续发展具有至关重要的意义。然而,碳排放数据往往呈现出非线性、非平稳以及复杂多变的特性,这使得传统的预测模型难以捕捉其内在规律,预测精度受到限制。为了克服这些挑战,近年来,混合预测模型因其能够融合不同模型的优势,被广泛应用于复杂时间序列预测领域。

本研究旨在构建一种基于变分模态分解(VMD)、长短期记忆网络(LSTM)、有序加权平均(IOWA)和径向基函数神经网络(RBF)的碳排放混合预测模型(VMD-LSTM-IOWA-RBF)。该模型旨在通过分解复杂碳排放序列、利用LSTM的长期记忆能力、融合不同模型的预测结果以及使用RBF进行残差修正,提升碳排放预测的精度和鲁棒性,为碳排放管理与控制提供更可靠的决策支持。

  1. 研究背景与意义

随着全球经济的快速发展和能源消耗的持续增长,碳排放量呈现逐年上升趋势,由此引发的气候变化问题日益突出。各国政府纷纷制定碳达峰、碳中和目标,积极探索绿色低碳发展路径。在此背景下,对碳排放进行准确、可靠的预测成为制定减排战略、评估政策效果、进行碳市场交易的重要基础。

然而,碳排放预测并非易事。碳排放量受到多种因素的影响,包括经济增长、能源结构、技术进步、政策调控、人口规模等,这些因素之间相互作用,使得碳排放序列呈现出复杂的非线性动态特征。传统的单一预测模型,如ARIMA模型、指数平滑模型等,往往假设数据具有线性或平稳特性,难以有效处理碳排放数据的非线性与非平稳性。机器学习模型,如支持向量机(SVM)、神经网络等,虽然在处理非线性问题方面表现较好,但单一模型的预测能力仍有局限性,且易受噪声干扰。

混合预测模型通过结合不同模型的优点,可以更全面地捕捉数据的特征,提高预测精度。例如,可以将信号分解技术与神经网络相结合,先对原始序列进行分解,然后对各分量分别进行预测,最后将各分量的预测结果进行合成。这种“分解-预测-集成”的思路在非平稳时间序列预测中已被证明是有效的。

基于上述分析,本研究提出构建VMD-LSTM-IOWA-RBF混合预测模型,旨在充分利用VMD对非平稳序列的分解能力、LSTM对长期依赖关系的建模能力、IOWA对不同预测结果的融合能力以及RBF对残差信息的捕捉能力,从而显著提升碳排放预测的准确性和稳定性。

  1. 相关理论基础

2.1 变分模态分解(VMD)

变分模态分解(VMD)是一种自适应、非递归的信号分解方法,它将原始信号分解为一系列具有特定中心频率的模态分量(IMF)。与经验模态分解(EMD)相比,VMD在分解过程中能够有效抑制模态混叠现象,具有更好的理论基础和分解效果。VMD分解过程是一个变分问题求解过程,目标是寻找一组模态分量uk(t)uk(t)和其对应的中心频率ωkωk,使得模态分量的带宽之和最小,同时各模态分量的和等于原始信号,并且各模态分量满足一定的约束条件。通过VMD分解,可以将复杂的碳排放序列分解为若干个相对平稳的子序列,从而降低预测难度。

2.2 长短期记忆网络(LSTM)

长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),其核心在于引入了门控机制(输入门、遗忘门、输出门),有效解决了传统RNN中存在的梯度消失和梯度爆炸问题。LSTM通过门控单元控制信息的流动,能够有效地学习和记忆长期依赖关系,这使得LSTM在处理时间序列数据方面具有显著优势。在碳排放预测中,LSTM可以捕捉不同时间点碳排放量之间的复杂关联,预测未来的碳排放趋势。

2.3 有序加权平均(IOWA)

有序加权平均(IOWA)是一种基于排序的聚合算子,它将待聚合的输入数据按照其数值大小进行排序,然后根据预先设定的权重向量对排序后的数据进行加权平均。与简单的加权平均或算术平均相比,IOWA能够根据数据的排序信息赋予不同的权重,从而更加灵活地反映数据的特征和重要性。在混合预测模型中,IOWA可以用于融合不同模型的预测结果,通过合理分配权重,提升集成预测的精度和鲁棒性。IOWA权重向量的确定通常需要通过优化算法或学习方法来获得。

2.4 径向基函数神经网络(RBF)

径向基函数神经网络(RBF)是一种前馈神经网络,其隐藏层神经元采用径向基函数作为激活函数,输入层到隐藏层是非线性的映射,隐藏层到输出层是线性的映射。RBF网络具有结构简单、训练速度快、逼近能力强等优点。在预测模型中,RBF网络常被用于处理非线性问题和进行残差修正。本研究中,RBF网络将用于学习并预测LSTM和IOWA集成后的残差,以进一步提高模型的预测精度。

  1. VMD-LSTM-IOWA-RBF混合预测模型构建

VMD-LSTM-IOWA-RBF混合预测模型的构建主要包括以下几个步骤:

步骤1:数据预处理与VMD分解。
首先,对原始碳排放时间序列数据进行必要的预处理,如归一化等。然后,利用VMD方法将原始碳排放序列分解为nn个相对平稳的IMF分量,

步骤2:基于LSTM的IMF分量预测。
LSTM模型的结构和参数(如隐藏层单元数、学习率、训练轮数等)需要根据每个IMF分量的特性进行调整和优化。训练过程中,采用历史数据作为训练集,未来数据作为测试集。

步骤3:LSTM模型预测结果集成。
将所有IMF分量通过各自的LSTM模型预测得到的未来时间步长预测值进行合成,得到基于LSTM的初步碳排放预测结果。

步骤4:基于IOWA的预测结果融合。
为了进一步提高预测精度,引入IOWA算子对初步的LSTM预测结果进行融合。考虑到VMD分解后不同IMF分量的频率特性和重要性可能不同,可以构建多个LSTM模型,或利用不同的时间窗口进行预测,得到多组初步预测结果。然后,将这些初步预测结果作为IOWA算子的输入,通过学习或设定的IOWA权重向量,得到IOWA融合后的预测结果。本研究中,可以考虑将不同LSTM模型(例如,对不同IMF分量训练得到的LSTM模型)的预测结果作为IOWA的输入,通过优化确定IOWA权重,以反映不同分量预测结果的重要性。

  1. 结论与展望

本研究提出了一种基于VMD-LSTM-IOWA-RBF的碳排放混合预测模型,该模型通过将信号分解、深度学习、集成学习和残差修正技术相结合,有效地提升了碳排放预测的精度。实验结果表明,相比于单一模型和部分混合模型,所提出的VMD-LSTM-IOWA-RBF模型在碳排放预测方面具有更优越的性能,能够更准确地捕捉碳排放序列的非线性、非平稳和复杂动态特征。

VMD分解能够有效降低原始序列的复杂性,为后续模型的预测奠定基础。LSTM模型具有强大的时序建模能力,能够学习并记忆长期依赖关系。IOWA算子通过对不同预测结果进行有序加权融合,进一步提高了模型的鲁棒性和准确性。RBF网络对残差信息的学习和预测,有效地弥补了主模型预测的不足,进一步提升了预测精度。

本研究为碳排放预测提供了一种新的有效方法,为政府部门制定碳排放控制政策、企业进行碳排放管理和碳市场交易提供了更可靠的预测信息。

未来研究方向可以包括:

  • 考虑更多影响碳排放的外部因素(如宏观经济指标、能源价格、政策因素等)并将其引入模型中,构建多变量预测模型。

  • 探索更先进的信号分解技术和集成学习方法,进一步提升模型的预测能力。

  • 研究模型的鲁棒性,评估模型在不同数据集和不同预测周期下的性能。

  • 将模型应用于其他领域的时间序列预测问题,如能源消耗预测、空气质量预测等。

  • 探索模型的在线学习能力,使其能够根据最新的数据不断更新和优化预测结果。

⛳️ 运行结果

🔗 参考文献

[1] 孟建军,江相君,李德仓,等.基于VMD-LSTM-WOA的铁路沿线风速预测模型[J].传感器与微系统, 2023, 42(4):152-156.DOI:10.13873/J.1000-9787(2023)04-0152-05.

[2] 朵俞霖,吕卫东,李淑婷.基于VMD-Self Attention-LSTM的短期电力负荷预测[J].Advances in Applied Mathematics, 2023, 12.DOI:10.12677/AAM.2023.123121.

[3] 彭玉洁,张冬冬,徐高洪,等.基于VMD-LSTM模型的三峡水库水面蒸发量预测研究[J].人民长江, 2024, 55(10):110-118.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值