✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
四圆柱形水箱系统作为经典的非线性多变量控制系统,因其复杂的动态特性而常被用作先进控制与估算算法的测试平台。准确可靠的状态估算对于实现高性能的控制至关重要。本文深入探讨了两种在处理非线性系统状态估算方面具有代表性的方法:移动地平线估算器 (MHE) 和级联扩展卡尔曼滤波器 (cEKF),并将它们应用于四圆柱形水箱系统。论文首先建立了系统的非线性数学模型,并对 MHE 和 cEKF 的基本原理、优势和局限性进行了详尽阐述。随后,通过仿真实验,对两种方法在不同噪声水平、初始条件偏差以及系统参数不确定性下的估算性能进行了对比分析,包括估算精度、鲁棒性和计算效率。研究结果表明,MHE 具有处理约束和提供更优估算性能的潜力,尤其是在存在较大模型误差或约束时;而 cEKF 则以其相对较低的计算复杂度和实时性优势,在许多应用场景下展现出良好的实用性。本文的贡献在于为理解和选择适用于复杂非线性系统状态估算的方法提供了理论基础和实践指导,特别是在四圆柱形水箱系统这一典型案例中。
关键词: 移动地平线估算器 (MHE),级联扩展卡尔曼滤波器 (cEKF),状态估算,非线性系统,四圆柱形水箱系统,对比分析,鲁棒性,计算效率
1. 引言
在现代控制理论和实践中,准确获取系统内部状态信息是实现高性能反馈控制的关键前提。然而,在许多实际工程系统中,由于传感器成本、物理限制或测量噪声等原因,无法直接获取所有状态变量的测量值。状态估算技术应运而生,旨在利用有限的传感器测量数据,结合系统的数学模型,实时或离线地推断出系统的内部状态。对于线性系统,卡尔曼滤波器 (Kalman Filter, KF) 是最优的线性无偏估算器。然而,现实中的许多系统,包括水箱系统、机器人、航空航天器等,都具有显著的非线性特性。在这种情况下,标准的卡尔曼滤波器不再适用,需要发展适用于非线性系统的状态估算方法。
四圆柱形水箱系统是一个广泛研究的非线性多变量系统,其动态特性由四个相互连接的圆柱形水箱组成,通过控制流入和流出的泵来实现对液位的控制。由于水箱之间的相互作用以及非线性流出特性,该系统的液位动态呈现出复杂的非线性。因此,准确估算四个水箱的液位对于实现稳定的液位控制至关重要。
本文将重点探讨两种常用的非线性状态估算方法:移动地平线估算器 (MHE) 和级联扩展卡尔曼滤波器 (cEKF),并将它们应用于四圆柱形水箱系统。MHE 是一种基于优化的方法,通过求解一个有限时间窗口内的最小化问题来估算当前状态。它可以自然地处理系统约束和非线性,理论上可以提供更优的估算性能,但计算负担通常较大。EKF (Extended Kalman Filter) 是 KF 在非线性系统上的扩展,通过对非线性系统模型进行线性化来近似最优估算。cEKF 则是 EKF 的一种变体,通过将系统状态分解为多个子状态,并使用级联的 EKF 来进行估算,有时可以提高估算性能和稳定性。
本文的结构安排如下:第二节将建立四圆柱形水箱系统的数学模型;第三节将详细阐述移动地平线估算器 (MHE) 的基本原理、优化问题构建以及实施挑战;第四节将介绍级联扩展卡尔曼滤波器 (cEKF) 的原理、线性化过程以及其结构特点;第五节将通过仿真实验,对 MHE 和 cEKF 在四圆柱形水箱系统中的估算性能进行对比分析,包括不同场景下的精度、鲁棒性和计算效率;第六节将对研究结果进行讨论,总结两种方法的优劣;第七节为结论,并对未来的研究方向提出展望。
2. 四圆柱形水箱系统的数学模型
四圆柱形水箱系统通常由四个圆柱形水箱组成,通过管道相互连接。两个泵分别向顶部的两个水箱(通常标记为水箱1和水箱2)供水,水的流出通过底部的出水口进行控制。水箱之间的连接方式决定了系统的动态特性。本文考虑一种典型的连接结构:水箱1流入水箱3,水箱2流入水箱4,水箱3流出到底部,水箱4流出到底部。此外,水箱1和水箱2之间可能存在回流管,水箱3和水箱4之间也可能存在回流管,增加了系统的耦合性和复杂性。
假设水箱为圆柱形,底面积恒定。根据质量守恒定律,每个水箱液位的变化率等于流入流量减去流出流量。考虑水从水箱底部流出的情况,通常可以采用 Torricelli 定律来描述流量与液位的关系,即流量与液位高度的平方根成正比。考虑到水箱之间的连接和可能的溢流,系统的动态方程可以表示为一组非线性微分方程。
设 hihi表示第ii个水箱的液位,AiAi表示第ii个水箱的底面积,qin,iqin,i表示流入第ii个水箱的流量,qout,iqout,i表示流出第ii个水箱的流量,qijqij表示从水箱ii流入水箱jj的流量。系统输入为两个泵的流量u1u1和u2u2。系统输出为两个水箱的液位测量值y1y1和y2y2(通常是水箱3和水箱4的液位)。
上述数学模型描述了四圆柱形水箱系统的非线性动态特性,为后续的状态估算算法设计提供了基础。
3. 移动地平线估算器 (MHE)
移动地平线估算器 (MHE) 是一种基于最优化的状态估算方法,其核心思想是在一个有限的时间窗口内,通过最小化一个目标函数来估算当前时刻的状态。这个目标函数通常包括三个部分:预测误差、量测误差以及对过去某个时刻状态的惩罚项(先验信息)。MHE 的“移动地平线”体现在每次进行估算时,都会将时间窗口向前滑动一步,并利用新的测量值和旧的估算结果。
3.1 MHE 基本原理
- 过程噪声项:
惩罚在时间窗口内的状态转移与模型预测之间的偏差,反映了过程噪声的影响。
Jprocess=∑i=k−N+1k−1(xi−f(xi−1,ui−1))TQ−1(xi−f(xi−1,ui−1))
- 测量噪声项:
惩罚在时间窗口内的测量值与通过估算状态预测的测量值之间的偏差,反映了测量噪声的影响。
Jmeasurement=∑i=k−N+1k(yi−h(xi))TR−1(yi−h(xi))
3.2 MHE 应用于四圆柱形水箱系统
将 MHE 应用于四圆柱形水箱系统,需要将系统的连续时间模型离散化。
MHE 在四圆柱形水箱系统中的优势包括:
- 处理非线性能力强:
可以直接处理液位动态和流量关系的非线性。
- 处理约束:
可以方便地纳入液位上下限等物理约束,提高估算结果的物理合理性。
- 潜在的优越性能:
在模型不确定性或噪声较大的情况下,通过利用多步信息,可能提供比 EKF 更优的估算精度。
然而,MHE 的缺点也十分突出:
- 计算量大:
求解非线性优化问题需要大量的计算资源,尤其是在时间窗口 NN 较大时,可能难以满足实时性要求。
- 参数整定复杂:
需要合理选择时间窗口大小 NN、过程噪声协方差矩阵 QQ、测量噪声协方差矩阵 RR 以及先验项的协方差矩阵 Pk−N+1Pk−N+1。
- 收敛性问题:
非线性优化问题的求解可能面临局部最优或不收敛的问题。
4. 级联扩展卡尔曼滤波器 (cEKF)
扩展卡尔曼滤波器 (EKF) 是卡尔曼滤波器在非线性系统上的扩展。它通过在当前工作点对非线性系统模型进行泰勒展开,将其近似为线性模型,然后应用标准的卡尔曼滤波步骤进行预测和更新。
级联扩展卡尔曼滤波器 (cEKF)
级联扩展卡尔曼滤波器 (cEKF) 是一种将 EKF 应用于具有特定结构的非线性系统的方法。
将 cEKF 应用于四圆柱形水箱系统,可以考虑如何将系统状态进行分解。例如,可以考虑将水箱1和2的液位作为一组状态,水箱3和4的液位作为另一组状态。或者根据水流方向,先估算上层水箱的液位,再估算下层水箱的液位。然而,对于四圆柱形水箱系统这种具有复杂回流和相互作用的系统,简单的状态分解可能并不直观或有效。一个更实际的 cEKF 应用场景可能是当系统存在层次结构或某些状态的动态比其他状态慢得多时。
另一种解释 cEKF 的角度是将系统的测量分为多个组,并针对每个测量组设计一个 EKF,前一个 EKF 的估算结果作为后一个 EKF 的先验信息。例如,如果分别测量水箱3和水箱4的液位,可以先用一个 EKF 利用水箱3的测量值估算所有状态,然后将这个估算结果作为先验,再用另一个 EKF 利用水箱4的测量值进行更新。但这并非典型的 cEKF 结构,更像是分步更新。
本文更倾向于将 cEKF 理解为对系统状态的分解,并使用级联的 EKF 进行估算。然而,对于四圆柱形水箱系统这种强耦合的系统,找到一个有效的状态分解方式是应用 cEKF 的关键挑战。如果不能找到合理的分解,cEKF 的优势可能无法体现,甚至可能不如单个的 EKF。
EKF 和 cEKF 在四圆柱形水箱系统中的优势包括:
- 计算效率高:
与 MHE 相比,EKF/cEKF 只需要进行矩阵运算,计算量相对较小,更容易满足实时性要求。
- 易于实现:
EKF 的算法结构相对简单,易于编程实现。
EKF 和 cEKF 的缺点包括:
- 线性化误差:
EKF/cEKF 基于局部线性化,当系统非线性较强时,线性化误差可能导致估算精度下降,甚至发散。
- 对初始条件敏感:
EKF/cEKF 的性能对初始状态和协方差的设置较为敏感。
- 难以处理约束:
标准的 EKF/cEKF 不直接处理状态和输入约束,需要额外的机制(如投影)来处理。
- cEKF 的分解难题:
对于强耦合系统,如何有效地进行状态分解是应用 cEKF 的挑战。
5. 讨论
通过对 MHE 和 cEKF 在四圆柱形水箱系统中的应用进行对比研究,我们可以得出以下几点讨论:
- 非线性处理能力:
MHE 通过求解非线性优化问题,能够直接处理系统的非线性,理论上可以获得更优的估算性能,尤其是在系统非线性较强的情况下。EKF/cEKF 依赖于局部线性化,当系统远离线性化点时,性能会下降。
- 鲁棒性:
MHE 利用一个时间窗口内的信息进行优化,对噪声和模型不确定性具有一定的滤波和平滑作用,表现出较好的鲁棒性。EKF/cEKF 更容易受到突发噪声或模型误差的影响。
- 计算效率:
这是 MHE 相对于 EKF/cEKF 的主要劣势。求解大规模非线性优化问题需要大量的计算资源和时间,可能无法满足高速实时系统的要求。而 EKF/cEKF 的计算量相对固定且较小,更适合实时应用。
- 约束处理:
MHE 可以方便地将状态和输入约束纳入优化问题,确保估算结果的物理合理性。EKF/cEKF 处理约束需要额外的机制。
- 参数整定:
MHE 的参数(如时间窗口大小、协方差矩阵)整定相对复杂,对性能影响较大。EKF/cEKF 的参数整定虽然也重要,但通常比 MHE 更直观。
- cEKF 的局限性:
对于四圆柱形水箱系统这种强耦合的系统,找到有效的状态分解方法是应用 cEKF 的关键。如果分解不合理,cEKF 的性能可能无法得到提升,甚至不如单个的 EKF。实际应用中,cEKF 的有效性高度依赖于系统的具体结构。
在选择 MHE 和 cEKF 时,需要根据具体的应用场景权衡它们的优缺点。如果对估算精度和鲁棒性要求极高,且计算资源充足,或者存在严格的系统约束,MHE 是一个有吸引力的选择。如果系统实时性要求高,计算资源有限,且系统非线性不是特别强,或者可以接受一定的估算误差,EKF 或 cEKF 可能更适用。
对于四圆柱形水箱系统,如果目标是实现高性能的液位控制,准确的液位估算至关重要。在离线分析或对计算时间要求不严格的场景下,可以考虑使用 MHE 来获得更精确的液位信息。在在线实时控制中,如果 MHE 的计算负担过大,可以考虑采用 EKF 或 cEKF,并结合其他技术(如模型预测控制)来弥补其在估算精度上的不足。
未来的研究可以关注如何提高 MHE 的计算效率,例如通过使用更高效的优化算法、并行计算或基于模型的降阶技术。同时,可以探索更先进的非线性滤波方法,如无迹卡尔曼滤波器 (Unscented Kalman Filter, UKF) 或粒子滤波器 (Particle Filter, PF),并将其应用于四圆柱形水箱系统,与 MHE 和 EKF/cEKF 进行对比分析。对于 cEKF,如何有效地对复杂耦合系统进行状态分解是一个值得深入研究的问题。
6. 结论
本文对移动地平线估算器 (MHE) 和级联扩展卡尔曼滤波器 (cEKF) 应用于四圆柱形水箱系统的状态估算进行了对比研究。通过对两种方法的基本原理、优势和局限性进行阐述,并结合仿真实验对性能进行分析,得出了以下结论:
-
四圆柱形水箱系统作为典型的非线性多变量系统,为状态估算算法的评估提供了理想的平台。
-
MHE 具有处理非线性、约束和提供优越估算性能的潜力,尤其是在存在较大噪声或模型误差时表现出更好的鲁棒性。然而,其计算量大是其主要限制。
-
EKF/cEKF 计算效率高,易于实现,适用于对实时性要求高的场景。但在处理强非线性和大噪声时,性能可能受到限制。cEKF 的有效性高度依赖于系统结构的分解。
-
在实际应用中,选择合适的估算方法需要权衡估算精度、鲁棒性、计算效率和实现复杂度等因素。
⛳️ 运行结果
🔗 参考文献
[1] 石凯.水下直升机控制的关键技术研究[D].中国科学院大学,2022.
[2] 杨建.滚动时域估计及其在多UUV协同定位中的应用[D].哈尔滨工程大学,2015.DOI:10.7666/d.D01105800.
[3] 尚胜美.FPSO火焰探测器的优化布置研究[D].中国石油大学(华东),2014.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇