【成像光敏描记图提取和处理】成像-光电容积描记-提取-脉搏率-估计附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在生物信号监测领域,无创、连续且便捷的技术始终是研究与应用的热点。传统的接触式光电容积描记(PPG)技术虽然成熟,但在舒适性、便捷性和长期监测方面存在局限性。近年来,基于视频的非接触式光敏描记图(Imaging Photoplethysmography, IPPG)技术异军突起,凭借其非接触、远距离、无需特殊设备的优势,在远程医疗、智能健康监测、情绪识别等领域展现出巨大潜力。本文旨在深入探讨IPPG的提取、处理及其在脉搏率(Heart Rate, HR)估计中的关键技术,并对其未来的发展方向进行展望。

第一章:IPPG的原理与提取

IPPG技术的核心原理是利用普通摄像头捕捉人体皮肤表面的微弱颜色变化,这些变化是由心脏搏动引起的血液容积变化所致。具体而言,血液中的血红蛋白对特定波长的光具有吸收特性,当心脏搏动时,动脉和动脉微循环中的血液容积会发生周期性变化,导致通过皮肤组织散射或反射的光强度发生相应变化。通过分析这些微弱的光强度变化,便可以提取出与心脏活动相关的生理信号。

1.1 光吸收与反射

IPPG的原理建立在Beer-Lambert定律之上,该定律描述了光通过介质时的衰减规律。当光照射到皮肤表面时,一部分光被反射,一部分光被散射,还有一部分光被吸收。血液中的血红蛋白对绿光(520-590nm)的吸收特性最为显著,因此在可见光范围内,绿光通道的颜色变化通常包含了最丰富的脉搏信息。然而,利用其他颜色通道(如红光和蓝光)的信息也可以辅助IPPG信号的提取和噪声抑制。

1.2 基于视频的IPPG信号提取

IPPG信号的提取通常涉及以下几个关键步骤:

  • 区域选择(Region of Interest, ROI):

     为了提高信噪比,需要从视频帧中选取包含皮肤区域的感兴趣区域。常见的ROI选择方法包括人脸检测、皮肤区域分割或者手动选择。人脸区域,特别是额头、脸颊和鼻尖等血管丰富的区域,是常用的ROI。

  • 像素值平均:

     在选定的ROI内,对每个颜色通道(如R、G、B)的像素值进行空间平均。这一步的目的是抑制局部噪声和不均匀的光照变化。平均后的R、G、B时间序列便是原始的IPPG信号。

  • 颜色通道分离:

     将平均后的颜色通道信号进行分离,得到独立的R、G、B时间序列。这些时间序列记录了ROI内各颜色通道随时间的光强度变化。

需要注意的是,原始的IPPG信号非常微弱,且容易受到各种噪声的干扰,包括环境光照变化、运动伪影、设备噪声等。因此,有效的信号处理技术对于从原始IPPG信号中提取可靠的脉搏信息至关重要。

第二章:IPPG信号的处理

提取到的原始IPPG信号通常被噪声污染,无法直接用于脉搏率估计。因此,必须对信号进行一系列的处理步骤,以增强脉搏信号并抑制噪声。常用的IPPG信号处理技术包括:

2.1 信号归一化

由于环境光照变化或相机自动增益控制等因素,原始IPPG信号可能存在基线漂移和幅值波动。信号归一化可以减弱这些非生理性变化的影响。常见的归一化方法包括:

  • 零均值化:

     减去信号的平均值,使信号的平均值为零。

  • Z-score标准化:

     减去平均值并除以标准差,使信号的平均值为零,标准差为一。

  • 相对变化率:

     利用信号相对于其基线或局部平均值的相对变化来表示信号。

2.2 滤波

滤波是IPPG信号处理中至关重要的步骤,旨在去除高频噪声和低频漂移,保留脉搏信号的主要成分。脉搏信号的频率通常在0.5 Hz到3 Hz之间(对应于30-180次/分钟的心率)。因此,常用的滤波方法包括:

  • 带通滤波:

     设计一个合适的带通滤波器,保留0.5 Hz到3 Hz之间的频率成分,抑制其他频率成分。常见的滤波器类型包括巴特沃斯滤波器、切比雪夫滤波器等。

  • 小波分解:

     利用小波变换将信号分解到不同频率子带,然后选择与脉搏信号频率范围相对应的子带进行重构。

2.3 盲源分离(Blind Source Separation, BSS)

在某些情况下,IPPG信号可能受到运动伪影等多种干扰源的影响,这些干扰源的波形可能与脉搏信号重叠。盲源分离技术可以在不知道信号源或混合矩阵的情况下,将混合信号分离为独立的源信号。常用的BSS方法包括独立成分分析(Independent Component Analysis, ICA)和主成分分析(Principal Component Analysis, PCA)。ICA特别适用于处理由运动引起的干扰,因为运动伪影通常具有与脉搏信号不同的统计独立性。PCA则可以用于降低数据的维度,并去除与脉搏信号不相关的成分。

2.4 颜色通道融合与选择

不同的颜色通道对脉搏信号的敏感度不同,同时受到的噪声影响也不同。因此,合理地利用或融合不同颜色通道的信息可以提高IPPG信号的质量。

  • 差分信号:

     计算不同颜色通道的差分,例如R-G或G-B。这些差分信号可以抑制共模噪声,例如均匀的光照变化。

  • 颜色比值:

     计算不同颜色通道的比值,例如R/G或G/B。这种方法对光照变化具有一定的鲁棒性。

  • 基于模型的融合:

     利用生物物理模型,如皮肤光学模型,将不同颜色通道的信息融合成更鲁棒的IPPG信号。

  • 基于机器学习的融合:

     利用机器学习算法,如支持向量机(SVM)或神经网络,学习如何融合不同颜色通道的信息,以获得最佳的脉搏信号。

此外,在某些场景下,通过评估不同颜色通道信号的质量(例如信噪比),可以选择质量最好的颜色通道信号进行后续处理。

第三章:脉搏率(HR)估计

从处理后的IPPG信号中提取脉搏率是IPPG技术的核心应用之一。脉搏率估计通常通过分析IPPG信号的周期性来实现。常用的脉搏率估计算法包括:

3.1 时域方法

时域方法直接在时间序列上分析信号的周期性特征。

  • 峰值检测(Peak Detection):

     识别IPPG信号中的波峰,相邻波峰之间的时间间隔即为脉搏周期。然后将周期转换为脉搏率(HR = 60 / 周期)。这种方法对信号的波形要求较高,容易受到噪声和运动伪影的影响,导致误检或漏检波峰。

  • 自相关分析(Autocorrelation Analysis):

     计算IPPG信号的自相关函数。自相关函数的峰值位置对应于信号的周期。这种方法对周期性信号具有较好的鲁棒性,可以有效地抵抗部分噪声。

  • 零交叉点检测(Zero Crossing Detection):

     识别信号通过零轴的时刻,然后分析这些零交叉点之间的时间间隔。

3.2 频域方法

频域方法将IPPG信号转换到频域,通过分析信号的频谱来估计脉搏率。

  • 快速傅里叶变换(Fast Fourier Transform, FFT):

     对IPPG信号进行FFT,得到信号的频谱。在频谱中,脉搏信号对应的频率成分通常表现为一个明显的峰值。该峰值对应的频率便是脉搏频率,将其乘以60即可得到脉搏率。这种方法对信号长度和采样率有要求,且容易受到谐波干扰的影响。

  • 功率谱密度估计(Power Spectral Density, PSD):

     利用PSD估计方法(如Welch法)可以得到更平滑的频谱,有助于识别主频峰。

3.3 时频分析方法

时频分析方法可以同时分析信号在时间和频率上的特性,适用于处理非平稳信号。

  • 短时傅里叶变换(Short-Time Fourier Transform, STFT):

     将信号分成短时窗,对每个窗口进行FFT,得到信号的时频表示。通过分析时频图上的能量分布,可以跟踪脉搏频率随时间的变化。

  • 小波变换(Wavelet Transform):

     利用小波基函数对信号进行分解,得到不同尺度下的信号信息。小波变换可以更好地捕捉信号的瞬时频率变化。

3.4 基于机器学习的脉搏率估计

近年来,机器学习,特别是深度学习,在IPPG脉搏率估计中展现出强大的性能。

  • 特征工程 + 传统机器学习:

     从IPPG信号中提取时域、频域或时频域特征,然后利用支持向量机、随机森林等传统机器学习算法进行训练,实现脉搏率的估计。

  • 深度学习端到端模型:

     利用卷积神经网络(CNN)或循环神经网络(RNN)等深度学习模型,直接从原始IPPG信号或其时频表示中学习脉搏率特征,并进行端到端的脉搏率估计。深度学习模型可以自动学习复杂的非线性关系,对噪声和运动伪影具有较强的鲁棒性。

第四章:IPPG在脉搏率估计中的挑战与解决方案

尽管IPPG技术取得了显著进展,但在实际应用中仍然面临一些挑战,主要包括:

4.1 环境光照变化: 环境光照的强度、颜色和闪烁会影响IPPG信号的质量。

  • 解决方案:
    • 自适应增益控制(AGC):

       利用相机的AGC功能补偿光照强度的变化。

    • 颜色通道融合与差分:

       利用不同颜色通道的组合抑制共模光照噪声。

    • 基于模型的补偿:

       利用光照模型对信号进行补偿。

    • 基于深度学习的鲁棒性增强:

       训练深度学习模型,使其对光照变化具有鲁棒性。

4.2 运动伪影: 头部、面部或身体的运动会导致像素位置变化和光照角度变化,产生强烈的运动伪影,淹没微弱的脉搏信号。

  • 解决方案:
    • 运动补偿:

       利用视频稳定技术或光流法估计运动,并对信号进行补偿。

    • 基于盲源分离的噪声抑制:

       利用ICA等方法将运动伪影从脉搏信号中分离。

    • 基于区域分割与跟踪:

       实时跟踪皮肤区域,确保ROI始终位于皮肤区域内。

    • 基于深度学习的运动伪影去除:

       训练深度学习模型识别和去除运动伪影。

4.3 个体差异: 不同个体的肤色、血管分布和生理状况不同,导致IPPG信号的特征存在差异。

  • 解决方案:
    • 个性化模型:

       针对不同个体建立个性化的IPPG模型。

    • 多光谱成像:

       利用不同波长的光获取更全面的信息。

    • 基于机器学习的适应性学习:

       训练机器学习模型具有较好的泛化能力,能够适应不同个体。

4.4 计算效率与实时性: 对于实时监测应用,IPPG信号处理和脉搏率估计的算法需要具有较高的计算效率。

  • 解决方案:
    • 优化算法实现:

       利用并行计算、硬件加速等技术提高算法运行速度。

    • 轻量级模型设计:

       设计参数量较少的深度学习模型。

    • 边缘计算部署:

       将算法部署在边缘设备上,减少数据传输延迟。

第五章:未来发展方向与展望

IPPG技术作为一种新兴的非接触式生理信号监测技术,未来发展前景广阔,其研究与应用将集中在以下几个方面:

5.1 提高IPPG信号的鲁棒性: 进一步研究和开发更有效的信号处理和噪声抑制技术,提高IPPG信号在复杂环境下的鲁棒性,例如强光、弱光、剧烈运动等场景。

5.2 多生理参数联合监测: 除了脉搏率,IPPG技术还可以用于估计呼吸率、血氧饱和度、血压等其他生理参数。未来的研究将探索如何利用IPPG信号联合提取和监测多个生理参数,构建更全面的健康监测系统。

5.3 与其他传感器的融合: 将IPPG与其他生理传感器(如心电图、体温传感器)或环境传感器(如光照传感器、加速度计)进行融合,可以提高监测的准确性和可靠性,并获取更丰富的生理和环境信息。

5.4 基于深度学习的端到端系统: 进一步探索和优化深度学习模型在IPPG提取、处理和参数估计中的应用,实现从原始视频到生理参数的端到端估计,简化系统流程并提高性能。

5.5 个性化与自适应算法: 开发能够根据个体特征和环境变化进行自适应调整的IPPG算法,提高监测的个性化和准确性。

5.6 在更多领域的应用拓展: 将IPPG技术应用于更广泛的领域,例如:

  • 驾驶员疲劳检测:

     通过监测驾驶员的脉搏率变化来评估其疲劳程度。

  • 情绪识别:

     探索IPPG信号与情绪状态之间的关联,实现非接触式情绪识别。

  • 智能家居与老年护理:

     将IPPG技术集成到智能家居设备中,实现对老年人的远程健康监测。

  • 运动训练与康复:

     在运动训练和康复过程中进行非接触式生理监测。

结论

IPPG技术作为一种具有巨大潜力的非接触式生理信号监测技术,在成像光敏描记图提取、处理和脉搏率估计方面取得了显著进展。通过有效的信号提取和处理技术,可以从视频中获取可靠的脉搏信息。各种时域、频域和时频域分析方法以及基于机器学习的方法被广泛应用于脉搏率的估计。然而,环境光照变化、运动伪影和个体差异等挑战仍然需要进一步解决。随着技术的不断发展和深入研究,IPPG技术将变得更加鲁棒、准确和便捷,并在医疗保健、智能健康、人机交互等领域发挥越来越重要的作用,为人们提供更智能、更便捷的健康监测和管理方案。未来,IPPG与其他技术的融合以及在更多领域的应用拓展将是重要的研究方向。

⛳️ 运行结果

🔗 参考文献

[1] 姜笑天.基于可见光成像设备抑制运动伪差的脉搏波及心率检测技术研究[D].北京理工大学[2025-05-08].DOI:CNKI:CDMD:2.1015.029911.

[2] 李林静.视觉光电容积脉搏波信号的精确提取算法研究[D].桂林电子科技大学,2023.

[3] 王慧敏,杨录,梁星雨.从光电容积图中提取脉搏率,呼吸率和心率的新方法(英文)[J].Journal of Measurement Science and Instrumentation, 2021(2):188-194.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值