✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
自适应滤波作为信号处理领域中的一个核心技术,广泛应用于通信、控制、生物医学、图像处理等诸多领域。其基本思想是通过一个可调参数的滤波器,在接收到输入信号和期望响应后,根据某种准则不断调整滤波器参数,使其输出信号尽可能逼近期望响应,从而实现诸如系统辨识、信道均衡、噪声抵消等功能。在众多的自适应滤波算法中,最小均方(LMS)算法因其计算简单、易于实现而备受青睐。然而,LMS算法的性能在噪声环境中容易受到影响,特别是在非高斯噪声存在的情况下,其收敛速度和稳态误差可能会显著恶化。为了提升自适应滤波器在复杂噪声环境下的鲁棒性,概率最小均方(PLMS)算法应运而生。本文将深入探讨PLMS算法的原理、优势,重点阐述其对高斯和非高斯噪声的鲁棒性,并对其应用前景进行展望。
一、LMS算法的局限性
LMS算法基于瞬时误差的平方最小化,其权值更新公式为:
W(n+1)=W(n)+μe(n)X(n)
二、PLMS算法的基本原理
为了克服LMS算法在非高斯噪声环境下的局限性,PLMS算法引入了概率学习的思想。与直接最小化瞬时误差平方不同,PLMS算法的目标是最小化误差信号的负对数似然函数,或者等价地,最大化误差信号的似然函数。其核心思想是,假设误差信号服从某种概率分布,然后通过最大化该概率分布的似然函数来优化滤波器权值。
PLMS算法的权值更新公式可以一般地表示为:
W(n+1)=W(n)+μg(e(n))X(n)
- 混合高斯分布:
对于复杂的噪声环境,误差信号可能服从多种概率分布的混合,此时可以采用混合高斯分布来建模。
通过选择合适的误差信号概率分布,PLMS算法能够更有效地处理非高斯噪声。其核心在于,当误差信号的概率分布已知或可以被有效估计时,最大化似然函数可以提供一个更鲁棒的优化准则,从而提高滤波器在复杂噪声环境下的性能。
三、PLMS算法对高斯和非高斯噪声的鲁棒性
PLMS算法对高斯和非高斯噪声的鲁棒性体现在以下几个方面:
3.1 对高斯噪声的鲁棒性:
虽然PLMS算法主要针对非高斯噪声设计,但其对高斯噪声也具有良好的鲁棒性。如前所述,当假设误差信号服从高斯分布时,PLMS算法退化为LMS算法。这意味着在高斯噪声环境下,PLMS算法至少能够达到LMS算法的性能水平。对于更通用的PLMS算法,即使在非高斯分布假设下,当实际噪声接近高斯分布时,PLMS算法通常也能保持较好的收敛性和稳态性能。这是因为高斯分布是一种非常常见的噪声模型,许多非高斯噪声在一定条件下也可以近似为高斯分布。此外,一些PLMS算法通过引入形状参数等,可以自适应地调整对误差的惩罚程度,使其在接近高斯噪声时也能表现良好。
3.2 对非高斯噪声的鲁棒性:
PLMS算法在处理非高斯噪声时表现出显著的优势,这主要得益于其基于概率学习的代价函数设计。
- 对抗脉冲噪声:
脉冲噪声是一种常见的非高斯噪声,其特点是幅度大但持续时间短。LMS算法在遇到脉冲噪声时容易产生较大的瞬时误差,导致权值剧烈波动。而基于拉普拉斯分布或其他具有重尾特性的概率分布的PLMS算法,对大误差的惩罚相对较小,能够有效地抑制脉冲噪声对权值更新的影响,从而提高滤波器的鲁棒性。例如,基于拉普拉斯分布的PLMS算法(符号LMS,SLMS)在权值更新中使用误差的符号,使得权值更新的幅度不受误差大小的影响,有效地降低了脉冲噪声带来的权值偏移。
- 适应不同噪声分布:
PLMS算法的灵活性在于可以通过选择不同的概率分布来适应不同的非高斯噪声环境。例如,当噪声呈现出不同的“尾部”特性时,可以选择广义高斯分布并调整形状参数来更好地拟合噪声分布。通过引入自适应概率分布估计或选择模型,PLMS算法甚至可以根据实际噪声特性自动调整代价函数,进一步提高其鲁棒性。
- 提高稳态性能:
在非高斯噪声环境下,LMS算法的稳态误差通常较大。而PLMS算法通过更准确地建模误差信号的概率分布,能够更有效地减小稳态误差。特别是在存在大量离群点的情况下,PLMS算法能够更好地抑制离群点对滤波器权值的影响,从而获得更低的稳态误差。
- 加速收敛:
在某些非高斯噪声环境下,PLMS算法的收敛速度也优于LMS算法。这是因为更准确的代价函数能够提供更有效的梯度信息,引导滤波器权值更快地收敛到最优解。
四、PLMS算法的实现与挑战
PLMS算法的实现需要对误差信号的概率分布进行建模。这可以通过以下几种方式实现:
- 先验知识:
如果对噪声环境有先验知识,可以直接选择合适的概率分布。
- 数据驱动:
通过对接收到的信号进行分析,估计误差信号的概率分布。例如,可以使用直方图分析、核密度估计等方法来估计误差信号的概率密度函数,然后选择一个能够很好地拟合估计分布的参数化概率模型。
- 自适应估计:
一些更高级的PLMS算法可以在滤波过程中自适应地估计或选择误差信号的概率分布。
PLMS算法也面临一些挑战:
- 概率分布的选择和估计:
选择合适的概率分布以及对概率分布进行准确估计是PLMS算法成功的关键。如果选择的概率分布与实际误差分布不符,可能会影响算法的性能。概率分布的估计也需要额外的计算开销。
- 计算复杂度:
与简单的LMS算法相比,PLMS算法的权值更新公式中可能包含更复杂的非线性函数g(⋅)g(⋅),这可能会增加计算复杂度。
- 收敛性分析:
PLMS算法的收敛性分析通常比LMS算法更为复杂,特别是在非高斯噪声环境下。
尽管存在这些挑战,随着计算能力的提升以及对概率建模技术的深入研究,PLMS算法的应用范围正在不断扩大。
五、PLMS算法的应用前景
PLMS算法凭借其对高斯和非高斯噪声的强大鲁棒性,在许多领域具有广阔的应用前景:
- 通信系统:
在无线通信、水声通信等容易受到脉冲噪声、干扰等非高斯噪声影响的领域,PLMS算法可以用于信道均衡、干扰抑制等,提高通信质量。
- 音频信号处理:
在语音识别、回声消除、噪声抑制等领域,背景噪声往往是非高斯的,PLMS算法可以有效地提高算法在复杂噪声环境下的性能。
- 生物医学信号处理:
心电图(ECG)、脑电图(EEG)等生物医学信号经常受到电源干扰、肌肉电等非高斯噪声的污染,PLMS算法可以用于信号去噪,提高诊断的准确性。
- 图像处理:
在图像去噪、图像增强等领域,图像信号也可能受到椒盐噪声等非高斯噪声的影响,PLMS算法可以提高图像处理算法的鲁棒性。
- 控制系统:
在工业控制、机器人控制等领域,传感器数据可能受到非高斯噪声的影响,PLMS算法可以用于状态估计、系统辨识等,提高控制系统的性能。
结论
概率最小均方(PLMS)自适应滤波器通过引入概率学习的思想,将误差信号的概率分布纳入到代价函数的设计中,从而有效地提高了自适应滤波器在高斯和非高斯噪声环境下的鲁棒性。与传统的LMS算法相比,PLMS算法能够更好地处理非高斯噪声,特别是对脉冲噪声等具有显著优势,能够获得更快的收敛速度和更低的稳态误差。虽然PLMS算法在概率分布的选择和估计等方面存在挑战,但随着理论和技术的发展,PLMS算法有望在更多实际应用中发挥重要作用,推动信号处理技术的进步。其对复杂噪声环境的适应能力使其成为应对现实世界中不确定性和变异性的重要工具。
⛳️ 运行结果
🔗 参考文献
[1] 王学成,张佳庚,马文涛.比例最小均方/四阶算法及其在系统辨识中的应用[J].高技术通讯, 2018, 28(9):9.DOI:CNKI:SUN:GJSX.0.2018-Z1-011.
[2] 向前,徐剑波,林春生.基于互谱估计的非高斯有色噪声中的谐波恢复[J].探测与控制学报, 2005, 27(2):3.DOI:CNKI:SUN:XDYX.0.2005-02-010.
[3] 石颖.非高斯噪声环境下的比例自适应滤波算法研究[D].电子科技大学,2019.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇