【时间序列谐波分析HANTS】HANTS用于去除异常值、平滑数据集、插值缺失数据以及压缩数据研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

时间序列数据在诸多科学研究和工程实践领域扮演着至关重要的角色。例如,在环境监测中,长时间连续采集的温度、湿度、植被指数等数据构成典型的时间序列;在金融领域,股票价格、汇率等同样表现为时间序列。然而,实际采集的时间序列数据常常面临各种挑战,如随机误差、传感器故障、环境干扰等导致的异常值,采集间隔不均匀或设备中断造成的缺失数据,以及 inherent 的噪声和数据冗余。这些问题严重影响了时间序列数据的质量和后续分析的准确性。因此,对时间序列进行有效的预处理显得尤为重要。

时间序列谐波分析(Harmonic Analysis of Time Series, HANTS)作为一种基于傅里叶分析原理的时间序列处理方法,近年来在处理包含周期性或准周期性分量的时间序列数据方面展现出显著的优势。HANTS通过将时间序列分解为不同频率的谐波分量,能够有效地识别和处理异常值、平滑数据集、插值缺失数据,并为数据压缩提供新的视角。本文旨在深入探讨HANTS在时间序列数据预处理中的应用,重点分析其在异常值去除、数据集平滑、缺失数据插值以及数据压缩研究中的原理、优势与局限性。

一、 HANTS的基本原理

HANTS的核心思想是将时间序列数据视为由一系列具有不同振幅、相位和频率的简谐波叠加而成。其基本数学模型可以表示为:

y(t)=A0+∑k=1N/2[Akcos⁡(2πfkt)+Bksin⁡(2πfkt)]+ϵ(t)

二、 HANTS在异常值去除中的应用

异常值是时间序列数据中最常见的噪声类型之一,其存在严重扭曲了数据的分布特征,并可能导致后续分析的偏差。HANTS通过其内置的异常值剔除机制,能够有效地识别和去除异常值。其过程大致如下:

  1. 初步拟合:

     使用所有数据点进行初步的谐波拟合,得到初始的谐波参数和残差。

  2. 异常值判断:

     计算每个数据点的残差,并与预设的阈值进行比较。阈值通常基于残差的标准差或百分位数来确定。

  3. 剔除与再拟合:

     将残差超过阈值的数据点标记为异常值,并在后续的迭代中将其从拟合数据集中剔除。使用剩余的数据点进行再次拟合,更新谐波参数。

  4. 迭代:

     重复步骤2和步骤3,直到没有新的异常值被识别或达到预设的迭代次数。

  5. 重建:

     使用最终拟合得到的谐波参数,重建剔除了异常值的时间序列。

HANTS在处理具有周期性特征的时间序列时,对异常值的去除效果尤为显著。例如,在植被指数(如NDVI)时间序列中,异常值通常表现为突然的高值或低值,而NDVI本身具有季节性的周期性变化。HANTS能够捕捉到这种周期性变化的主体,而将偏离周期性模式的异常值识别出来并去除。然而,需要注意的是,HANTS对异常值的去除效果受到谐波阶数选择和阈值设定的影响。过低的谐波阶数可能无法完全捕捉数据的周期性,导致正常波动被误判为异常值;过高的谐波阶数则可能对异常值过度敏感,误伤正常数据。同时,阈值设定过宽可能导致异常值未能被完全去除,过窄则可能剔除正常数据。因此,在实际应用中,需要结合对数据特征的理解和多次尝试来确定最优的参数。

三、 HANTS在数据集平滑中的应用

除了去除异常值,HANTS也常用于时间序列的平滑。数据中的高频噪声成分会导致数据波动性过大,影响后续的分析和可视化。通过谐波分析,可以将时间序列分解为不同频率的成分。通过保留低频的谐波分量,并去除或减弱高频分量,可以实现对时间序列的平滑处理。

HANTS在平滑中的应用通常有两种方式:

  1. 低通滤波:

     在谐波分析后,只保留预设的较低频率的谐波分量,并使用这些分量重建时间序列。这相当于对原始时间序列进行了低通滤波,滤除了高频噪声。

  2. 权重平滑:

     对不同频率的谐波分量赋予不同的权重,对高频分量赋予较低的权重,然后进行重建。这种方法可以更精细地控制平滑程度。

HANTS在平滑具有周期性特征的数据时,能够更好地保留数据的周期性结构,而避免过度平滑导致的周期性失真。例如,在气温时间序列中,除了日变化和年变化等周期性分量外,还存在随机的短期波动。HANTS可以有效地滤除这些短期波动,平滑数据,同时保留气温的周期性变化趋势。相比于移动平均等传统的平滑方法,HANTS能够更好地处理边界效应和非均匀采集的数据。

四、 HANTS在缺失数据插值中的应用

缺失数据是时间序列分析中普遍存在的问题,如何有效地插值缺失数据是提高数据质量的关键。HANTS提供了一种基于周期性规律的插值方法。其基本思想是,利用已有的非缺失数据拟合时间序列的谐波模型,然后利用拟合得到的谐波模型来预测缺失数据点的值。

插值过程通常如下:

  1. 使用非缺失数据拟合模型:

     利用时间序列中所有非缺失的数据点进行HANTS拟合,求解出最优的谐波参数。

  2. 利用模型预测缺失值:

     将缺失数据点对应的时间输入到拟合得到的谐波模型中,计算其对应的预测值,作为缺失数据的插值结果。

HANTS在插值缺失数据时,能够充分利用数据的周期性信息,从而生成更加合理和自然的插值结果。例如,在具有季节性变化的植被指数时间序列中,如果某个时期的数据缺失,HANTS可以利用该地区历史植被指数的季节性变化规律,预测出缺失时期合理的植被指数值。这种方法在处理具有明显周期性且缺失数据量不大的情况下表现良好。然而,如果缺失数据量过大,或者数据的周期性不强,HANTS的插值效果可能会受到影响。此外,对于非周期性的时间序列,HANTS的插值效果相对有限。

五、 HANTS在数据压缩研究中的潜力

数据压缩是降低存储成本和提高数据传输效率的重要手段。HANTS为时间序列数据的压缩提供了一种新的思路。传统的压缩方法通常直接对原始数据进行压缩,而HANTS则可以对时间序列的谐波参数进行存储和传输。

其数据压缩的潜力体现在:

  1. 参数表示:

     一个具有周期性特征的时间序列,可以用少量谐波参数来表示。相比于存储原始时间序列中的所有数据点,存储这些参数可以大幅减少数据量。

  2. 选择性存储:

     根据应用需求,可以选择性地存储不同频率的谐波参数。例如,如果只关注数据的宏观趋势,可以只保留低频谐波分量;如果需要更高精度的数据,则可以保留更多高频分量。

  3. 高效重建:

     利用存储的谐波参数,可以高效地重建时间序列,从而实现数据的解压缩。

HANTS在数据压缩方面的优势在于,其基于数据的内在结构(周期性)进行压缩,具有较高的压缩比,并且在重建过程中能够保留数据的关键特征。这对于需要存储和传输大量时间序列数据的应用场景,如遥感数据、传感器网络数据等具有重要意义。然而,需要注意的是,HANTS对非周期性数据和具有复杂非线性特征的时间序列,其压缩效果可能不如传统压缩算法。此外,选择最优的谐波阶数以平衡压缩比和重建精度是应用HANTS进行数据压缩的关键。

六、 总结与展望

HANTS作为一种基于谐波分析的时间序列处理方法,在异常值去除、数据集平滑、缺失数据插值以及数据压缩等多个方面展现出强大的应用潜力。其内置的异常值剔除机制、基于周期性结构的平滑和插值能力,以及通过谐波参数实现数据压缩的思路,使其成为处理具有周期性特征的时间序列数据的有力工具。

然而,HANTS也存在一定的局限性。其对非周期性或具有复杂非线性特征的时间序列的处理能力相对有限。谐波阶数和异常值剔除阈值的选择对处理结果影响较大,需要根据具体数据特征进行细致的调整和优化。未来的研究可以探索如何将HANTS与其他时间序列分析方法相结合,例如,与机器学习算法结合,以提高对非周期性数据的处理能力;或者研究自适应的谐波阶数和阈值选择方法,以提高方法的鲁棒性和自动化程度。此外,深入研究HANTS在不同领域,如经济学、医学等时间序列数据处理中的应用,进一步拓展其应用范围,也具有重要的研究价值。

⛳️ 运行结果

🔗 参考文献

[1] 于信芳,庄大方.基于MODIS NDVI数据的东北森林物候期监测[J].资源科学, 2006.DOI:JournalArticle/5ae9828ec095d713d88ed07b.

[2] 杨闫君,占玉林,田庆久,等.基于GF-1/WFVNDVI时间序列数据的作物分类[J].农业工程学报, 2015(24):7.DOI:10.11975/j.issn.1002-6819.2015.24.024.

[3] 徐文婷,吴炳方,颜长珍,等.用SPOT-VGT数据制作中国2000年度土地覆盖数据[J].遥感学报, 2005, 9(2):11.DOI:10.3321/j.issn:1007-4619.2005.02.013.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值