用于确定分数阶系统(FOS)的Lyapunov指数谱,包括分数阶Lorenz系统、4D分数阶Chen系统和分数阶Duffing振荡器附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

Lyapunov指数(LEs)是表征动力系统行为复杂性的关键指标,其正负和数值大小直接反映了系统的稳定性、周期性、拟周期性或混沌性。对于整数阶系统,Lyapunov指数的计算方法已经相对成熟。然而,随着分数阶微积分理论的发展和应用,分数阶系统因其对复杂现象更精确的描述能力而受到广泛关注。本文旨在深入探讨确定分数阶系统Lyapunov指数谱的方法,并以分数阶Lorenz系统、4D分数阶Chen系统和分数阶Duffing振荡器为例,详细阐述其计算过程和结果分析。研究表明,分数阶微积分的引入显著影响了系统的动力学行为,其Lyapunov指数谱也随之改变,揭示了分数阶导数在混沌系统动力学中的重要作用。

关键词: 分数阶系统;Lyapunov指数;Lyapunov指数谱;分数阶Lorenz系统;4D分数阶Chen系统;分数阶Duffing振荡器;混沌动力学

引言

动力系统是描述自然界和工程领域中各种现象演化的数学工具。对动力系统的定性分析和定量表征是理解其行为规律的基础。在非线性动力学领域,混沌现象因其对初始条件的敏感依赖性而备受关注,其表征工具之一便是Lyapunov指数。Lyapunov指数衡量了系统在相空间中邻近轨道的指数分离率。一个或多个正的Lyapunov指数是混沌系统最显著的特征。

传统的动力系统通常由整数阶微分方程描述。然而,许多实际系统,如粘弹性材料、电力系统、金融市场以及生物系统等,表现出长记忆效应和分形特性,这些特性用整数阶模型难以准确刻画。分数阶微积分理论为描述这类复杂系统提供了新的数学框架。分数阶导数和积分可以捕捉系统的非局部性和记忆效应,使得分数阶系统在建模和分析复杂动力学方面展现出独特的优势。

近年来,关于分数阶系统的研究取得了显著进展,包括分数阶混沌系统、分数阶控制器设计以及分数阶系统稳定性分析等。然而,确定分数阶系统的Lyapunov指数仍然是一个具有挑战性的问题。由于分数阶导数的非局部性和奇异性,传统的Lyapunov指数计算方法需要进行适当的修改和推广。

本文将聚焦于分数阶系统的Lyapunov指数谱确定问题。首先,我们将回顾分数阶微积分的基本概念以及常用的分数阶导数定义。接着,我们将详细介绍适用于分数阶系统的Lyapunov指数计算方法,包括基于定义的方法和数值计算方法。然后,我们将选取具有代表性的三个分数阶系统:分数阶Lorenz系统、4D分数阶Chen系统和分数阶Duffing振荡器,对它们的Lyapunov指数谱进行具体的计算和分析。通过这些具体例子,我们将展示分数阶阶次对系统Lyapunov指数谱的影响,并探讨分数阶微积分在改变系统动力学行为中的作用。最后,我们将对全文进行总结,并展望未来的研究方向。

1. 分数阶微积分基础

分数阶微积分是整数阶微积分的推广,其基本概念包括分数阶导数和分数阶积分。目前存在多种定义分数阶导数的方式,其中最常用的包括Riemann-Liouville定义和Caputo定义。

Caputo分数阶导数在处理初值问题时具有明显的优势,因为它的拉普拉斯变换包含传统的整数阶导数的初值项。在本文中,我们将主要采用Caputo分数阶导数来描述分数阶系统。

2. 分数阶系统Lyapunov指数的确定方法

确定分数阶系统的Lyapunov指数是一个非平凡的任务。由于分数阶导数的性质,传统的基于Jacobi矩阵和变分方程的方法需要进行推广。以下介绍几种常用的方法:

2.1 基于定义的方法

2.2 基于数值计算的方法

由于解析求解分数阶微分方程和线性化扰动方程的困难性,数值计算方法成为确定分数阶系统Lyapunov指数的主要途径。常用的数值方法包括:

  • 基于Wolf方法的推广: Wolf等人的方法是计算整数阶系统Lyapunov指数的经典方法,它通过监测相空间中两个初始距离很近的轨道的距离随时间的演化,并定期对距离进行重标化来避免数值溢出。对于分数阶系统,可以将此方法进行推广。在积分过程中,选择一对初始距离很近的轨迹,追踪它们随时间的演化。在每个时间步长,计算它们的距离,并与上一步的距离进行比较,从而估计局部扩张率。为了获得Lyapunov指数谱,需要同时追踪多个正交扰动向量。

  • 基于QR分解的方法: Eckmann和Ruelle提出的基于QR分解的方法是一种更稳定的计算Lyapunov指数谱的方法。该方法通过对描述扰动演化的矩阵进行QR分解,来维持扰动向量的正交性,从而避免数值漂移和共线性问题。对于分数阶系统,可以将分数阶积分方法与QR分解相结合,在每个时间步长对扰动向量进行演化和正交化。

在实际计算中,需要选择合适的数值积分步长和计算时间,以确保结果的准确性和收敛性。同时,需要丢弃初始瞬态过程,在系统进入吸引子后进行计算,以获得渐进的Lyapunov指数。

3. 分数阶系统Lyapunov指数谱的计算与分析

接下来,我们将利用上述方法对三个具有代表性的分数阶系统进行Lyapunov指数谱的计算与分析。

3.1 分数阶Lorenz系统

计算结果与分析:

随着 αα 逐渐减小(但大于某个临界值),数值计算结果显示,最大的Lyapunov指数仍然为正,表明系统保持混沌状态。然而,混沌的吸引子结构和系统的动力学行为可能会发生变化。例如,对于较低的 αα,混沌吸引子可能会“收缩”,或者出现新的动力学行为,如周期运动或稳定平衡点。

当 αα 小于某个临界值时,最大的Lyapunov指数可能变为零或负值,此时系统可能不再是混沌的,而是表现出周期运动或趋向于稳定平衡点。这表明分数阶阶次对Lorenz系统的混沌行为起着关键作用。降低分数阶阶次可以抑制混沌,甚至导致混沌消失。这可能是因为分数阶导数的记忆效应使得系统对过去的轨迹更加敏感,从而限制了相空间中轨道的发散。

3.2 4D分数阶Chen系统

计算结果与分析:

对于4D分数阶Chen系统,当参数选择适当且分数阶阶次 αα 接近1时,系统可以表现出超混沌行为,即存在两个或多个正的Lyapunov指数。

随着分数阶阶次 αα 的减小,超混沌现象可能会持续存在,但吸引子的结构和性质可能会发生变化。与分数阶Lorenz系统类似,当 αα 减小到一定程度时,正的Lyapunov指数可能会减少,甚至全部变为非正,导致系统从超混沌或混沌状态转变为周期运动或稳定状态。

4D分数阶Chen系统的更高维度为研究分数阶微积分对高维混沌系统动力学的影响提供了平台。分数阶导数的引入不仅影响了系统的整体稳定性,还可能改变相空间中轨道的维数和吸引子的分形维数。

3.3 分数阶Duffing振荡器

计算结果与分析:

对于分数阶Duffing振荡器,分数阶阶次 αα 对系统的动力学行为有着显著影响。当 αα 接近1且参数处于混沌区域时,系统表现出混沌行为,存在一个正的Lyapunov指数。

随着 αα 的减小,系统的混沌区域可能会发生变化。在某些参数下,降低 αα 可能会抑制混沌,导致系统从混沌状态转变为周期运动。而在另一些参数下,降低 αα 甚至可能诱发混沌。这种复杂的影响表明分数阶导数对非线性振荡器的动力学具有非平凡的作用。

分数阶Duffing振荡器的研究对于理解分数阶微积分在控制和同步等领域的应用具有重要意义。通过调整分数阶阶次,可以改变系统的Lyapunov指数谱,从而影响系统的混沌特性,为混沌控制和同步提供新的手段。

4. 结论与展望

本文深入探讨了确定分数阶系统Lyapunov指数谱的方法,并以分数阶Lorenz系统、4D分数阶Chen系统和分数阶Duffing振荡器为例,进行了详细的计算和分析。研究表明,分数阶微积分的引入显著影响了系统的动力学行为,其Lyapunov指数谱也随之改变。分数阶阶次对系统的混沌行为起着关键作用,可以通过调整分数阶阶次来抑制或诱发混沌。

尽管在分数阶系统Lyapunov指数的确定方面取得了一些进展,但仍存在一些挑战和未来的研究方向:

  • 更高效和精确的数值方法:

     现有的数值方法在处理高维和复杂分数阶系统时可能存在计算效率和精度问题。需要发展更高效、更稳定的数值算法来计算Lyapunov指数谱。

  • 理论分析方法:

     目前对分数阶系统Lyapunov指数的理论分析仍然有限。需要发展更深入的理论工具来理解分数阶阶次与Lyapunov指数之间的关系。

  • 复杂分数阶系统的Lyapunov指数:

     对于具有时滞、耦合或噪声的分数阶系统,其Lyapunov指数的确定更加复杂。需要针对这些复杂系统开发相应的计算方法。

  • 分数阶微积分在Lyapunov稳定性理论中的应用:

     将分数阶微积分理论更深入地应用于Lyapunov稳定性理论,为分数阶系统的稳定性分析提供更完善的框架。

  • Lyapunov指数与分数阶系统实际应用的联系:

     将分数阶系统的Lyapunov指数与实际应用问题(如控制、同步、信息加密等)相结合,指导分数阶系统在工程和科学领域的应用。

⛳️ 运行结果

🔗 参考文献

[1] 孙宁,张化光,王智良.不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报:工学版, 2010(7):4.DOI:10.3785/j.issn.1008-973X.2010.07.010.

[2] 田野,卢志茂,高雪瑶.六维分数阶Lorenz-duffing系统仿真[J].现代电子技术, 2017, 40(12):6.DOI:10.16652/j.issn.1004-373x.2017.12.006.

[3] 李爽,徐伟,李瑞红.利用随机相位实现Duffing系统的混沌控制[J].物理学报, 2006, 055(003):1049-1054.DOI:10.3321/j.issn:1000-3290.2006.03.009.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值