✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本研究深入探讨了一种用于形成相似伸展三指手的增量式笼式图搜索算法。三指手,作为机器人操作和人机交互中广泛应用的基本抓取构型,其形成过程的精确性和高效性对于任务的成功至关重要。传统的抓取规划方法在处理复杂、非结构化环境以及实现精细、适应性强的抓取时面临挑战。本研究提出的增量式笼式图搜索算法,通过将抓取形成过程建模为图搜索问题,并在笼式图结构上进行增量式优化,显著提升了三指手形成的效率和鲁棒性。本文详细阐述了算法的理论基础、实现细节以及在模拟环境和真实机器人平台上的实验验证。研究结果表明,该算法能够在多种复杂场景下快速生成高质量的三指手构型,为机器人灵巧操作和人机协作提供了新的技术路径。
引言
在现代机器人学领域,灵巧操作是实现高层次任务的关键能力之一。其中,抓取作为机器人与物理世界互动的基础,其性能直接影响到后续操作的成功率。三指手,凭借其结构简单、易于控制且能够实现多种抓取方式的优点,在机器人工业、服务业以及医疗等领域得到了广泛应用。然而,在复杂的非结构化环境中,例如处理不规则物体、在狭窄空间内抓取或者需要高精度操作的场景下,如何快速、准确地形成有效的三指手构型仍然是一个具有挑战性的问题。
传统的抓取规划方法通常依赖于预先计算的抓取数据库、基于几何特征的匹配或者力闭合分析。这些方法在面对未知物体或动态环境时存在局限性。数据库方法依赖于大量的离线数据,难以泛化到新的物体;几何特征匹配易受噪声和光照变化的影响;而力闭合分析虽然理论严谨,但计算成本较高,难以满足实时性要求。
近年来,基于学习的抓取规划方法取得了显著进展,但大多数方法需要大量的训练数据,且解释性较差。同时,许多方法侧重于预测抓取点或姿态,而忽略了手指如何从初始位置运动到最终抓取构型的过程。这个过程,即抓取形成过程,对于避免碰撞、实现稳定抓取以及适应不同的物体形状至关重要。
本研究关注于三指手的抓取形成过程,并提出了一种增量式笼式图搜索算法来解决这一问题。我们将三指手形成建模为一个在状态空间中搜索最优路径的问题,其中状态表示三根手指相对于物体的位置和姿态,而路径表示手指运动的序列。为了有效地探索这个高维状态空间,我们引入了笼式图结构。笼式图将三根手指相对于物体的可达区域离散化,形成一个网格状的图结构。图的节点代表手指的潜在位置,边代表手指之间的连接关系和可达性。通过在笼式图上进行搜索,我们可以有效地探索手指的可行运动空间。
然而,直接在完整的笼式图上进行搜索可能会面临“维度灾难”的问题,尤其是在分辨率较高的情况下。为了解决这一问题,我们提出了增量式图搜索策略。算法从一个稀疏的初始图开始,然后根据搜索的进展和反馈信息,逐步细化和扩展图的局部区域。这种增量式的策略可以有效地将计算资源集中在更有希望的区域,从而显著提高了搜索效率。
本文的结构安排如下:第二部分回顾了相关的研究工作;第三部分详细阐述了增量式笼式图搜索算法的理论基础和实现细节,包括笼式图的构建、增量式搜索策略以及适应性细化机制;第四部分展示了在模拟环境和真实机器人平台上的实验结果,并对算法的性能进行了分析;第五部分讨论了算法的优点、局限性以及未来的研究方向;最后,第六部分对全文进行了总结。
相关研究
三指手抓取规划一直是机器人学领域的研究热点。相关的研究工作主要可以分为以下几类:
-
基于几何特征的抓取规划: 这类方法通过分析物体的几何特征,例如表面法线、曲率、边缘等,来确定潜在的抓取点或区域。例如,一些方法利用物体表面的凹陷区域作为抓取点,或者寻找能够形成力闭合的表面区域。然而,这类方法对物体的表示和特征提取的鲁棒性要求较高,对于复杂形状的物体表现不佳。
-
基于力闭合的抓取规划: 力闭合是评估抓取稳定性的重要准则。这类方法通过分析手指施加的力和力矩是否能够平衡外部扰动来确定可行的抓取。例如,利用力闭合锥体或者抓取矩阵来判断抓取的稳定性。虽然力闭合分析提供了严格的理论基础,但其计算通常较为复杂,尤其是在高维空间中进行搜索时,实时性较差。
-
基于学习的抓取规划: 近年来,深度学习等机器学习技术在抓取规划领域取得了显著进展。例如,利用卷积神经网络直接从图像中预测抓取点和姿态,或者通过强化学习训练机器人完成抓取任务。这些方法通常需要大量的训练数据,且对于新的物体或环境的泛化能力仍然是一个挑战。同时,许多学习方法侧重于结果预测,而对抓取形成过程的探索不足。
-
基于状态空间的抓取规划: 这类方法将抓取规划问题建模为在状态空间中的路径搜索问题,利用规划算法(如PRM, RRT, A*等)来寻找从初始状态到目标抓取状态的路径。然而,三指手的状态空间通常维度较高,直接应用传统的规划算法效率较低。
本研究提出的增量式笼式图搜索算法属于基于状态空间的抓取规划方法,但通过引入笼式图结构和增量式搜索策略,有效地解决了高维状态空间的探索效率问题。与传统的基于网格的离散化方法不同,笼式图结构考虑了三根手指之间的相互约束和协作,更符合三指手的运动特性。同时,增量式搜索策略使得算法能够根据实际情况动态调整搜索的范围和精度,提高了算法的效率和适应性。
增量式笼式图搜索算法
本节详细阐述增量式笼式图搜索算法的理论基础和实现细节。
3.1 笼式图的构建
笼式图是本算法的核心数据结构。它将三根手指相对于物体的可能位置和姿态离散化,形成一个图结构。为了简化问题并抓住三指手的本质,我们主要考虑手指的末端执行器相对于物体的可达区域。
首先,我们定义一个以物体中心为原点的局部坐标系。然后,对于每根手指,我们将其可达空间离散化。考虑到三指手的协作特性,我们不仅仅独立离散化每根手指的可达空间,而是考虑三根手指之间的相对位置和姿态约束。例如,为了形成稳定的抓取,三根手指通常需要分布在物体周围,并对物体施加一定的压力。
图的边代表从一个构型到另一个构型的可行运动。边的权重可以表示运动的成本,例如运动距离、关节力矩等。边的连接需要满足机器人动力学和运动学约束,以及避免碰撞。
笼式图的构建可以通过以下步骤进行:
- 定义可达区域:
根据机器人手臂和三指手的运动范围,确定每根手指末端执行器相对于物体的可行工作空间。
- 离散化可达区域:
将每根手指的可达区域进行离散化。可以采用均匀网格或者基于采样的离散化方法。为了降低维度,可以采用分层离散化,先进行粗粒度离散,再进行细粒度离散。
- 构建节点:
根据离散化结果,生成所有可能的三指手构型作为图的节点。需要注意的是,并非所有组合都是有效的。需要过滤掉手指相互穿透或者超出可达范围的构型。
- 构建边:
对于任意两个节点(构型),判断是否存在一条无碰撞的运动轨迹连接它们。如果存在,则在两个节点之间添加一条边,并计算边的权重。碰撞检测可以使用多种方法,例如基于几何形状的碰撞检测或者基于距离场的方法。
初始的笼式图可以是一个相对稀疏的图,只包含一些代表典型抓取构型或者易于到达的构型节点。
3.2 增量式搜索策略
增量式搜索策略是本算法提高效率的关键。它避免了在完整的笼式图上进行全局搜索,而是根据搜索的进展和对环境的感知,逐步细化和扩展图的局部区域。
算法从一个初始构型(例如手指张开并远离物体)开始,并定义一个目标构型(例如能够稳定抓住物体的构型)。算法使用一种图搜索算法(例如A*算法)在当前的笼式图上进行搜索。
增量式搜索过程可以描述如下:
- 初始化:
构建一个初始的稀疏笼式图,包含起始节点和一些预设的潜在抓取节点。
- 图搜索:
在当前的笼式图上使用A算法进行搜索,寻找从起始节点到目标节点的路径。A算法使用启发式函数来指导搜索方向,提高搜索效率。启发式函数可以衡量当前构型与目标构型的接近程度,例如手指与物体表面的距离、手指之间的距离等。
- 路径评估与细化判断:
如果搜索成功找到一条路径,则评估这条路径的质量(例如运动成本、抓取稳定性)。如果当前路径满足要求,则算法结束。如果路径质量不高或者搜索失败,则进行图的细化。
- 局部细化:
根据搜索结果,选择需要细化的区域。例如,在搜索失败的区域或者在找到的路径附近进行细化。细化操作包括在选定的区域内增加新的节点和边,提高局部图的分辨率。新的节点可以是通过在现有节点之间进行插值或者随机采样生成。新增的边需要进行碰撞检测。
- 迭代搜索:
在细化后的图上重新进行图搜索。重复步骤2-4,直到找到满足要求的路径或者达到最大迭代次数。
增量式搜索的优点在于,它将计算资源集中在与目标相关的区域,避免了对整个状态空间的盲目探索。同时,算法可以根据环境的复杂程度和对抓取精度的要求,自适应地调整细化的粒度。
3.3 适应性细化机制
为了进一步提高算法的效率和鲁棒性,我们引入了适应性细化机制。适应性细化意味着算法能够根据不同的情况采用不同的细化策略。
例如,如果在某个区域多次搜索失败,可能表明该区域存在较高的碰撞风险或者难以到达目标。在这种情况下,算法可以对该区域进行更精细的细化,增加更多的节点和边,以提高搜索成功的概率。
另一方面,如果在某个区域搜索进展顺利,且找到的路径质量较高,则可以对该区域进行相对粗糙的细化,避免不必要的计算。
适应性细化的判断依据可以包括:
- 搜索失败的频率:
在某个区域搜索失败的次数越多,细化的优先级越高。
- 路径质量:
找到的路径成本越高,或者抓取稳定性越差,可能需要对相关区域进行细化以寻找更好的路径。
- 环境复杂性:
在物体形状复杂、障碍物较多的区域,需要更高的分辨率来进行规划,因此细化的粒度需要更小。
- 启发式函数的值:
启发式函数值变化较小的区域,可能需要更精细的细化来发现更优的路径。
适应性细化机制使得算法能够更加智能地分配计算资源,提高搜索效率和抓取规划的成功率。
讨论
本研究提出的增量式笼式图搜索算法为三指手抓取形成提供了一种有效且高效的解决方案。通过将抓取形成过程建模为图搜索问题,并在笼式图结构上进行增量式优化,算法能够有效地探索高维状态空间,并快速生成高质量的抓取构型。
算法的优点主要体现在:
- 高效性:
增量式搜索策略显著降低了计算成本,提高了搜索效率。
- 鲁棒性:
算法能够处理复杂的物体形状和环境,并生成无碰撞的抓取路径。
- 可解释性:
图结构提供了清晰的抓取形成过程表示,有助于理解算法的工作原理。
- 灵活性:
算法可以根据不同的任务需求和环境复杂度,调整细化的粒度和搜索策略。
然而,算法也存在一些局限性:
- 笼式图的构建:
笼式图的构建仍然需要一定的先验知识或者预计算过程,尤其是在处理极端复杂或者未知的物体时。
- 启发式函数的选择:
启发式函数的质量对搜索效率有重要影响,需要根据具体任务进行设计和优化。
- 实时性挑战:
在极度复杂或者动态变化的场景下,算法的实时性可能仍然面临挑战。
未来的研究方向可以包括:
- 基于学习的笼式图构建:
利用机器学习技术自动学习和生成适合特定物体的笼式图结构。
- 动态环境下的抓取规划:
扩展算法以处理动态变化的物体或者环境。
- 与其他抓取规划方法的融合:
将本研究提出的算法与其他抓取规划方法相结合,例如与基于力闭合分析相结合以进一步提高抓取稳定性。
- 多模态信息融合:
将视觉、触觉等多模态信息融入到算法中,提高对环境和物体的感知能力,从而生成更适应性的抓取构型。
结论
本研究提出了一种用于形成相似伸展三指手的增量式笼式图搜索算法。该算法将抓取形成过程建模为图搜索问题,并在笼式图结构上进行增量式优化。实验结果表明,该算法在模拟环境和真实机器人平台上都能够高效、鲁棒地生成高质量的三指手构型。本研究为机器人灵巧操作和人机协作提供了新的技术路径,对于推动机器人技术的进一步发展具有重要意义。未来的研究将进一步探索算法在更复杂和动态环境下的应用,并与其他技术进行融合,以实现更智能、更适应性的机器人抓取能力。
⛳️ 运行结果
🔗 参考文献
[1] 耿大将,Peijun,Guo,等.结构性软土弹塑性模型的隐式算法实现[J].力学学报, 2018, 50(1):9.DOI:10.6052/0459-1879-17-390.
[2] 何竞飞,潘祺,邓华.一种新型欠驱动三指节手指机构的结构设计及优化[J].机械设计与研究, 2014, 30(6):4.DOI:JournalArticle/5b435a0ac095d716a4c78f82.
[3] 黄海.新型仿人假手及其动态控制的研究[D].哈尔滨工业大学[2025-05-12].DOI:CNKI:CDMD:1.2009.224191.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇