高斯环境中QAM 16调制的大量SNR值的BER,为每个BER测量计算100个误差,以获得更好的结果研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在数字通信系统中,调制技术是将数字信息转化为模拟信号的关键步骤。正交幅度调制(Quadrature Amplitude Modulation, QAM)是一种高效的调制方案,通过同时调制载波的幅度和相位来传输多个比特信息。16QAM作为QAM家族中的一员,可以传输4个比特的信息,在带宽效率方面优于传统的PSK和ASK调制。然而,数字信号在传输过程中不可避免地会受到噪声的干扰,其中加性高斯白噪声(Additive White Gaussian Noise, AWGN)是一种常见的噪声模型,它对通信系统的性能,尤其是误码率(Bit Error Rate, BER),产生显著影响。

误码率是衡量通信系统性能的关键指标,它表示传输过程中错误比特数占总传输比特数的比例。信噪比(Signal-to-Noise Ratio, SNR)则是衡量信号强度相对于噪声强度的指标,通常以分贝(dB)为单位表示。理论上,在AWGN信道中,对于特定的调制方案,误码率与信噪比之间存在确定的关系。然而,在实际仿真和实验中,由于随机性以及有限的仿真次数,获得的误码率值往往与理论值存在偏差。为了获得更接近真实情况的误码率,尤其是在低误码率区域,需要进行大量的仿真或实验,并对错误进行充分的统计。

本研究旨在探讨在AWGN环境中,16QAM调制在大量不同信噪比值下的误码率性能。与传统的在每个SNR点仅计算少量误差或进行固定次数仿真的方法不同,本研究强调在每个误码率测量点,通过大量的传输来累积至少100个错误比特。这种方法可以显著提高低误码率区域的测量精度和可靠性,从而更准确地反映16QAM调制在不同噪声水平下的性能表现。通过对大量SNR值下的误码率进行详细分析,本研究将深入理解16QAM调制在AWGN信道中的特性,为实际通信系统的设计和优化提供参考。

理论基础

16QAM调制是一种星座图由16个点的调制方式,每个点代表一个特定的4比特序列。在AWGN信道中,接收到的信号可以表示为发送信号加上一个服从高斯分布的随机噪声。由于噪声的存在,接收到的信号点会偏离原始的发送信号点,可能导致解调错误,即误码。

在数字通信系统中,调制技术是将数字信息转化为模拟信号的关键步骤。正交幅度调制(Quadrature Amplitude Modulation, QAM)是一种高效的调制方案,通过同时调制载波的幅度和相位来传输多个比特信息。16QAM作为QAM家族中的一员,可以传输4个比特的信息,在带宽效率方面优于传统的PSK和ASK调制。然而,数字信号在传输过程中不可避免地会受到噪声的干扰,其中加性高斯白噪声(Additive White Gaussian Noise, AWGN)是一种常见的噪声模型,它对通信系统的性能,尤其是误码率(Bit Error Rate, BER),产生显著影响。

误码率是衡量通信系统性能的关键指标,它表示传输过程中错误比特数占总传输比特数的比例。信噪比(Signal-to-Noise Ratio, SNR)则是衡量信号强度相对于噪声强度的指标,通常以分贝(dB)为单位表示。理论上,在AWGN信道中,对于特定的调制方案,误码率与信噪比之间存在确定的关系。然而,在实际仿真和实验中,由于随机性以及有限的仿真次数,获得的误码率值往往与理论值存在偏差。为了获得更接近真实情况的误码率,尤其是在低误码率区域,需要进行大量的仿真或实验,并对错误进行充分的统计。

本研究旨在探讨在AWGN环境中,16QAM调制在大量不同信噪比值下的误码率性能。与传统的在每个SNR点仅计算少量误差或进行固定次数仿真的方法不同,本研究强调在每个误码率测量点,通过大量的传输来累积至少100个错误比特。这种方法可以显著提高低误码率区域的测量精度和可靠性,从而更准确地反映16QAM调制在不同噪声水平下的性能表现。通过对大量SNR值下的误码率进行详细分析,本研究将深入理解16QAM调制在AWGN信道中的特性,为实际通信系统的设计和优化提供参考。

理论基础

16QAM调制是一种星座图由16个点的调制方式,每个点代表一个特定的4比特序列。在AWGN信道中,接收到的信号可以表示为发送信号加上一个服从高斯分布的随机噪声。由于噪声的存在,接收到的信号点会偏离原始的发送信号点,可能导致解调错误,即误码。

图片

图片

为了使这个估计值更准确,尤其是在低误码率的情况下,需要传输足够多的比特,使得错误比特的数量足够大。本研究提出的在每个BER测量点计算100个误差,就是为了确保在低误码率区域,误码率估计值的统计可靠性。

研究方法

本研究采用蒙特卡洛仿真方法来模拟16QAM调制在AWGN信道中的传输过程。具体步骤如下:

  1. 生成随机比特序列:

     生成大量的随机二进制比特序列,作为待传输的信息。

  2. 16QAM调制:

     将比特序列分组,每4个比特为一组,并根据16QAM的星座图映射规则,将每组比特映射到一个复数符号点。本研究将采用格雷码映射以降低相邻符号点之间的比特差异。

  3. 添加AWGN噪声:

     对于每个发送的复数符号点,添加服从零均值、方差与信噪比相关的复高斯白噪声。噪声的方差与信号功率和信噪比有关。

  4. 接收信号:

     接收到的信号是发送符号点与噪声的叠加。

  5. 16QAM解调:

     对接收到的信号点进行解调,通常采用最大似然解调,即将接收到的点判决为距离其最近的星座点。

  6. 计算误码:

     将解调得到的比特序列与原始发送的比特序列进行比较,统计错误的比特数量。

  7. 计算误码率:

     在每个信噪比点,持续进行仿真,直到累计的错误比特数量达到预设的阈值(本研究设定为100个错误)。然后,计算误码率:BER = (累计错误比特数) / (总传输比特数)。为了实现累计100个错误,需要在误码率较低的信噪比点传输更多的比特。

  8. 改变信噪比:

     重复步骤1-7,对一系列不同的信噪比值进行仿真。本研究将选取一个范围广泛的SNR值,以全面了解16QAM在不同噪声水平下的性能。信噪比值的选择将从较低的SNR开始,逐步增加,直到误码率非常低。

  9. 数据分析和可视化:

     将不同SNR值下的误码率结果进行记录、分析,并绘制误码率-信噪比曲线,与理论曲线进行对比。

本研究的关键之处在于步骤7,即每个误码率测量点都需要累积至少100个错误。为了达到这个目标,仿真需要持续进行,直到达到设定的错误数量阈值。这意味着在低信噪比下,需要传输的比特数相对较少就能达到100个错误,而在高信噪比下,误码率非常低,需要传输非常大量的比特才能累积到100个错误。这种方法虽然计算量较大,但可以显著提高低误码率区域误码率测量的准确性和可靠性。

预期结果与分析

通过上述仿真方法,预期可以得到16QAM调制在AWGN信道中误码率随信噪比变化的曲线。

  1. 曲线趋势:

     随着信噪比的增加,噪声对信号的影响减弱,解调错误的概率降低,因此误码率预计将随着信噪比的增加而单调下降。

  2. 与理论曲线的对比:

     在理想的AWGN信道中,仿真得到的误码率曲线应该与理论曲线基本吻合。在低信噪比区域,仿真结果可能会与理论近似公式存在一定偏差,但在高信噪比区域,仿真结果应更接近理论值。

  3. “累积100个错误”的效果:

     采用“累积100个错误”的方法可以显著减少在低误码率区域由于统计样本不足导致的误码率估计误差。特别是在误码率低于10^-2甚至10^-3时,仅仅传输固定数量的比特可能无法获得足够多的错误样本,导致计算出的误码率波动较大,可靠性较低。通过确保至少100个错误样本,可以使得误码率的估计值更稳定,更接近真实值。在高信噪比下,为了累积100个错误,需要进行大量的仿真,这验证了该方法需要更多的计算资源。

  4. SNR范围的影响:

     仿真结果将展示16QAM调制在不同SNR范围内的性能差异。在较低的SNR下,误码率较高,通信可靠性较差。随着SNR的增加,误码率迅速下降,系统性能提升。了解不同SNR下的误码率有助于在实际系统中进行性能评估和链路预算。

讨论与意义

本研究通过在每个误码率测量点计算100个错误,旨在提高16QAM调制在AWGN信道中误码率测量的准确性和可靠性,尤其是在低误码率区域。这种方法虽然增加了计算复杂度,但对于需要精确评估通信系统性能的场景具有重要意义。

  1. 精确性能评估:

     在实际通信系统的设计和优化过程中,精确的误码率性能曲线至关重要。特别是在设计需要达到极低误码率的应用(例如数据传输、数字广播等)时,准确了解系统在高信噪比下的性能是必不可少的。

  2. 验证理论模型:

     通过与理论误码率曲线的对比,可以验证理论模型的准确性,并了解实际仿真与理论之间的差异,这些差异可能源于仿真中的实现细节或非理想因素。

  3. 系统设计参考:

     研究结果可以为16QAM调制在不同信噪比下的应用提供参考。例如,根据所需的误码率性能,可以确定系统所需的最小信噪比,从而指导发射功率、天线增益等参数的设计。

  4. 仿真方法的重要性:

     本研究突出了在低误码率区域进行可靠仿真测量的重要性。仅仅进行固定次数的仿真可能会导致误码率估计值波动较大,无法准确反映系统性能。采用累积足够多错误的方法是获得可靠仿真结果的有效途径。

当然,本研究也存在一些潜在的局限性。例如,仿真结果仅限于AWGN信道,实际通信环境中可能存在其他类型的噪声和干扰,如多径效应、衰落等。未来研究可以在此基础上进一步考虑更复杂的信道模型,以更全面地评估16QAM调制在实际环境中的性能。此外,本研究的计算量随着所需测量误差数量的增加而显著增加,在计算资源有限的情况下,可能需要权衡测量精度和仿真时间。

结论

本研究深入探讨了在AWGN环境中,16QAM调制在大量不同信噪比值下的误码率性能,并着重强调了在每个误码率测量点累积至少100个错误以提高结果可靠性。通过采用蒙特卡洛仿真方法,模拟了16QAM调制信号的传输过程,并在不同信噪比下统计了误码率。

预期结果将展示随着信噪比的增加,16QAM误码率显著下降的趋势,并与理论曲线基本吻合。通过在每个测量点累积100个错误,尤其是在低误码率区域,仿真结果的准确性和可靠性将得到显著提升,从而更精确地反映16QAM调制在不同噪声水平下的性能。

⛳️ 运行结果

图片

图片

图片

图片

🔗 参考文献

[1] 赵玉杰,师荣光,高怀友,等.基于MATLAB 6.x的BP人工神经网络的土壤环境质量评价方法研究[J].农业环境科学学报, 2006.DOI:CNKI:SUN:NHBH.0.2006-01-038.

[2] 赵亚丽,西广成,易建强.复杂系统中统计相关性测量的熵方法研究[J].系统工程学报, 2005, 20(4):5.DOI:10.3969/j.issn.1000-5781.2005.04.014.

[3] 李晓静,黄红飞.S函数建模和仿真过程的研究[J].电子设计工程, 2011, 19(018):27-29.DOI:10.3969/j.issn.1674-6236.2011.18.010.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值