✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
复杂动力系统的分析与预测一直是科学研究的核心议题。许多实际问题,如流体力学、气候建模、生物系统等,都涉及高维、非线性甚至混沌的动力学行为。传统的线性系统理论往往难以有效刻画这些系统的演化规律。近年来,基于算子的方法,特别是Koopman算子理论,为非线性动力系统的全局分析提供了新的视角。Koopman算子是一个作用于可观测函数空间的无限维线性算子,它将原系统的非线性演化提升到可观测函数空间的线性演化。然而,由于Koopman算子通常是无限维的,在实际应用中需要对其进行有限维近似。
并行地,降维技术,特别是本征正交分解(Proper Orthogonal Decomposition, POD),在处理高维数据和系统降阶方面发挥着重要作用。POD通过寻找数据的主要变化方向,将高维数据投影到低维子空间,从而捕获系统的主要动态特征。将Koopman算子与POD结合,有望在低维POD基下对Koopman算子进行有效近似,从而实现复杂动力系统的降维线性化分析。
本文旨在探讨在核特征空间中,利用POD基对Koopman算子进行稀疏表示的学习方法。选择核特征空间是因为它可以将非线性可观测函数巧妙地映射到线性可加的特征空间,从而更易于处理非线性系统的函数演化。稀疏表示的引入,则有助于捕捉Koopman算子的关键组成部分,提高模型的泛化能力,并可能揭示动力系统的内在结构。
第一部分:Koopman算子与POD降维的理论基础
1.1 Koopman算子理论概述
Koopman算子的核心思想是将系统在状态空间中的非线性演化,转化为可观测函数在函数空间中的线性演化。Koopman算子的特征值和特征函数包含了系统的全局动力学信息。Koopman算子的特征函数构成了可观测函数空间的基底,在该基底下降维线性化分析成为可能。然而,确定 Koopman 算子的特征函数通常非常困难,特别是对于复杂的非线性系统。
1.2 本征正交分解(POD)
POD 在流体力学、结构动力学等领域取得了巨大成功,能够有效地捕捉系统的主要空间模态。将Koopman算子与POD结合,可以利用POD基构建有限维的可观测函数子空间,并在该子空间中近似Koopman算子。
第二部分:在核特征空间中构建Koopman算子的近似
2.1 核方法与特征空间
2.2 基于POD的Koopman算子近似
第三部分:稀疏表示的学习
尽管通过POD基在核特征空间中构建了Koopman算子的有限维近似,得到的矩阵 KpKp 仍然可能稠密,包含大量接近于零的元素。稀疏表示旨在找到一个更简洁的表示,只保留Koopman算子在POD基下的关键连接。这有以下几个优点:
- 提高泛化能力:
稀疏模型可以减少过拟合,提高在未知数据上的预测精度。
- 揭示内在结构:
稀疏表示可能对应于动力系统中不同POD模态之间的主要相互作用,从而揭示系统的内在结构。
- 降低计算复杂度:
稀疏矩阵的存储和计算效率更高。
在具体实现时,需要仔细选择核函数及其参数,以及POD降维的维度 pp 和稀疏性正则化参数 λλ。这些参数的选择通常依赖于交叉验证或对系统动力学特性的先验知识。
第四部分:讨论与展望
在核特征空间中学习POD基础下Koopman算子的稀疏表示,为复杂动力系统的降维线性化分析提供了新的途径。这种方法结合了核方法的非线性映射能力、POD的降维优势以及稀疏表示的正则化和解释性优点。
然而,该方法也面临一些挑战和未来的研究方向:
- 核函数选择和参数优化:
如何选择合适的核函数及其参数对模型性能至关重要。对于特定类型的动力系统,是否存在最优的核函数?
- POD基的构建:
POD基的质量直接影响Koopman算子近似的精度。如何处理高维数据进行有效的POD分解,以及如何选择合适的降维维度?
-
** Koopman 可观测函数的选择:** 在核特征空间中,我们选择了基于参考点的线性组合形式的可观测函数。是否存在更优的可观测函数族,能够更好地捕获系统的动力学?
- 稀疏性的解释和应用:
稀疏Koopman矩阵的非零元素如何解释动力系统中POD模态之间的相互作用?如何利用稀疏性进行系统控制、预测和异常检测?
- 处理非平稳和混沌系统:
对于非平稳和混沌系统,Koopman算子的性质更加复杂。如何在这种情况下构建有效的近似和稀疏表示?
- 大规模数据处理:
处理大规模高维数据时,计算核矩阵和进行POD分解可能计算量巨大。需要开发更高效的算法和并行计算技术。
- 与数据驱动方法的结合:
将该方法与深度学习等数据驱动方法结合,利用神经网络等非线性函数逼近器构建更灵活的可观测函数空间或学习Koopman算子的近似,也是一个重要的研究方向。
结论
本文探讨了在核特征空间中,利用POD基学习Koopman算子稀疏表示的方法。该方法通过将状态空间映射到核特征空间,利用POD对特征空间中的快照进行降维,并在POD基下通过稀疏优化学习Koopman算子的有限维近似。这种方法有望为复杂动力系统的建模、分析和预测提供一种有效的框架,并在理解非线性系统的内在结构方面发挥作用。未来的研究将集中于解决现有挑战,并进一步拓展该方法的应用范围。随着计算能力的提升和机器学习理论的发展,基于Koopman算子的数据驱动动力系统分析方法将继续展现其巨大的潜力。
⛳️ 运行结果
🔗 参考文献
[1] 平作为.智能电网中数据驱动建模与控制问题[D].华中科技大学,2020.
[2] K.Jafri,陈柏超,陈耀军,等.基于SVG的10kV 15电平M-STACOM的建模仿真及控制策略研究(英文)[J].高电压技术, 2013(05):227-232.DOI:CNKI:SUN:GDYJ.0.2013-05-034.
[3] 李冬霞,宁嘉伟,刘海涛.星基ADS-B系统空天链路的建模与仿真[J].中国民航大学学报, 2024, 42(4):37-42.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇