具有Squid动力学的系统的动力学运动规划研究[ode45解决]附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

动力学运动规划是机器人学、航空航天、自动化等领域的核心问题之一。其目标是在考虑系统动力学约束、环境限制和任务目标的前提下,生成一条可行的、最优的运动轨迹。传统的运动规划方法通常侧重于几何路径规划,然后在后处理阶段进行动力学可行性验证或轨迹优化。然而,对于具有复杂动力学特性的系统,如模仿生物运动的机器人,例如以喷水推进为主要运动机制的仿生鱿鱼(Squid)机器人,忽略动力学约束可能导致生成的轨迹无法在物理世界中实现,或者需要耗费巨大的控制力矩。因此,深入研究具有Squid动力学的系统的动力学运动规划具有重要的理论意义和实际应用价值。

Squid动力学系统的特点

Squid(鱿鱼)以其独特的喷水推进方式而闻名。其运动原理在于通过收缩外套膜将大量海水吸入,然后迅速通过虹吸管将水射出,利用反作用力产生推力。这种运动方式具有以下几个显著特点:

  1. 非线性与耦合性:

     喷水推进产生的推力大小和方向与外套膜收缩的速度、虹吸管的角度以及周围水环境的性质等因素高度非线性相关。此外,推力会直接影响系统的平移和旋转,各个自由度之间存在强烈的耦合。

  2. 非完整性:

     喷水推进通常只能产生沿着特定方向的推力(例如,通过调节虹吸管方向),这使得系统无法像万向轮机器人那样在任意方向上瞬时移动。这种非完整性约束使得运动规划更加复杂。

  3. 间歇性推力:

     喷水推进是一个间歇性的过程,外套膜吸水、收缩、喷水需要一定的时间。这导致系统受到的推力是随时间变化的,并非连续可调。

  4. 水动力学效应:

     系统在水中运动时会受到水的阻力、升力、附着质量等水动力学效应的影响。这些效应进一步增加了动力学模型的复杂性。

鉴于这些特点,传统的基于简单质点模型或刚体模型的运动规划方法难以直接应用于具有Squid动力学的系统。需要建立更为精确的动力学模型,并在规划过程中充分考虑模型的非线性、耦合性、非完整性和间歇性等特性。

基于ODE45的动力学运动规划方法

为了解决具有复杂动力学系统的运动规划问题,基于采样的运动规划方法,如RRT(Rapidly-exploring Random Trees)和PRM(Probabilistic Roadmaps),被广泛应用于高维空间中的路径搜索。然而,这些方法通常需要一个有效的状态转移模型来预测系统在给定控制输入下的未来状态。对于具有复杂动力学特性的系统,解析求解其动力学方程通常十分困难,或者需要大量的计算资源。在这种情况下,利用数值积分方法来模拟系统的动态响应成为一种可行且有效的方法。MATLAB中的ode45函数作为一种成熟、高效的常微分方程(ODE)求解器,非常适合用于模拟具有Squid动力学的系统的运动过程。

ode45应用于动力学运动规划的关键在于构建一个能够描述系统动力学的ODE模型,并将其集成到采样或优化的框架中。具体流程可以概括如下:

  1. 建立动力学模型:

     根据Squid喷水推进的原理,建立系统的动力学方程。这通常是一个二阶非线性ODE系统,描述系统位置、姿态、速度和角速度随时间的变化。模型中需要包含喷水推力、水动力学效应以及其他可能的外部扰动。喷水推力可以建模为与外套膜压力、虹吸管方向和喷水速度相关的函数。水动力学效应可以根据经验公式或通过CFD(计算流体动力学)模拟来获得。

  2. 构建状态转移函数:

     定义一个函数,该函数以当前系统状态(位置、姿态、速度、角速度等)和控制输入(例如,外套膜收缩速率、虹吸管方向等)为输入,利用ode45求解器在一定时间步长内对动力学方程进行数值积分,输出系统在该时间步长后的状态。

  3. 集成到运动规划框架中:

     将状态转移函数集成到基于采样的规划算法中。例如,在RRT算法中,当生成一个随机状态点后,不再使用简单的欧氏距离来连接节点,而是使用基于动力学模型的轨迹段。从当前节点出发,通过施加一定的控制输入,利用ode45预测系统在一定时间内的运动轨迹,如果轨迹能够到达或靠近随机状态点,则将该轨迹段作为新的分支添加到树中。在轨迹优化方法中,ode45可以用于计算轨迹沿线的动力学可行性,并提供梯度信息用于优化。

  4. 处理非完整性约束和间歇性推力:

     针对Squid动力学的非完整性和间歇性特点,需要在控制输入的设计和轨迹生成过程中加以考虑。例如,控制输入可能需要设计为一系列离散的喷水动作,而不是连续的推力。规划算法也需要适应这种间歇性。

  5. 碰撞检测与避障:

     在生成轨迹的过程中,需要实时进行碰撞检测,确保生成的轨迹不会与环境中的障碍物发生碰撞。ode45生成的轨迹提供了连续的状态信息,方便进行精细的碰撞检测。

  6. 代价函数与优化:

     为了获得最优轨迹,可以定义一个代价函数,例如,能量消耗、完成任务的时间、路径长度等。通过在规划过程中最小化代价函数来优化生成的轨迹。

使用ode45的优势在于其成熟性、鲁棒性和效率,能够有效地处理非刚性ODE系统。然而,需要注意的是,ode45求解的是确定性的动力学模型,对于存在不确定性或外部扰动的系统,可能需要结合其他方法,如鲁棒控制或强化学习。

研究内容与挑战

基于ODE45的具有Squid动力学的系统动力学运动规划研究可以进一步深入以下几个方面:

  1. 更精确的动力学建模:

     建立更为精细和准确的Squid动力学模型,特别是更精确地描述喷水推力的产生机制以及复杂的水动力学效应。可以结合CFD模拟数据来优化模型参数。

  2. 高效的状态转移函数:

     对于实时性要求高的应用,需要优化ode45的使用,例如,采用更小的积分步长,但要平衡计算效率和精度。可以考虑利用并行计算来加速状态转移的计算。

  3. 控制输入空间的探索与优化:

     Squid的运动能力受到外套膜收缩和虹吸管调节的限制。研究如何有效地探索和优化控制输入空间,以生成更高效、更灵活的运动轨迹。可以考虑基于学习的方法来学习最优的控制策略。

  4. 应对环境不确定性:

     水下环境复杂且充满不确定性,如洋流、温度变化等。研究如何使规划算法具备对环境变化的适应性,例如,结合传感器数据进行在线重规划或采用鲁棒控制策略。

  5. 多智能体协调与规划:

     如果需要多个Squid机器人协同完成任务,如水下勘探或监测,则需要研究多智能体之间的动力学运动规划与协调问题。

结论

具有Squid动力学的系统的动力学运动规划是一个具有挑战性和重要性的研究课题。通过建立精确的动力学模型,并利用ode45等数值积分方法作为核心的状态转移工具,可以将复杂的非线性、非完整系统动力学集成到先进的运动规划框架中。这使得我们能够生成更为精确、可行且最优的运动轨迹,为仿生Squid机器人等复杂水下移动平台的高效运动控制奠定基础。未来的研究可以进一步聚焦于动力学模型的精细化、控制策略的优化、环境不确定性的处理以及多智能体协同等方向,从而推动水下机器人技术的发展和应用。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 漆汉宏,田永君,王天生,等.高温超导双晶结dc SQUID的I~V特性仿真研究[J].系统仿真学报, 2004, 16(7):4.DOI:10.3969/j.issn.1004-731X.2004.07.015.

[2] 赵恩海,程其恒,傅泽禄,等.快速单磁通量子伪随机码发生器[J].科学通报, 2000, 45(018):2003-2007.DOI:10.3321/j.issn:0023-074X.2000.18.020.

[3] 漆汉宏.高温超导dc-SQUIDs及其涡流无损检测方法研究[D].燕山大学,2004.DOI:10.7666/d.y733290.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值