✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电磁场的数值模拟在科学研究和工程设计中扮演着至关重要的角色,特别是在电磁兼容性、天线设计、光学器件以及微波电路等领域。时域有限差分法(FDTD)作为一种强大而直观的时域模拟方法,以其直观的物理意义、相对容易的实现以及对复杂结构的适应性而广受青睐。然而,FDTD方法在处理无限或半无限计算区域时面临一个核心挑战:如何有效地截断计算区域并防止仿真区域边界对内部场的反射,从而模拟电磁波在无界空间中的传播。吸收边界条件(ABC)应运而生,旨在吸收离开计算区域的电磁波,最大限度地减少边界反射。其中,Mur吸收边界条件因其相对简单且在许多情况下表现良好的特性,成为一种常用的选择。
本文将深入探讨在具有Mur吸收边界条件的区域中应用的二维时域有限差分法(2D FDTD)。我们将首先回顾2D FDTD方法的基本原理,然后详细阐述Mur吸收边界条件的推导及其在2D FDTD中的实现。最后,我们将讨论应用Mur ABC时需要考虑的因素以及其局限性。
1. 2D FDTD方法的基本原理
这些方程构成了 2D FDTD 的核心迭代更新公式,通过反复执行这些公式,我们可以模拟电磁场在计算区域内的时域演化。然而,这些方程仅适用于计算区域的内部点。对于计算区域的边界,我们需要采用特殊的边界条件来处理,以防止不必要的反射。
2. Mur吸收边界条件的推导与实现
Mur吸收边界条件是一种基于单向波方程的吸收边界条件。其核心思想是在计算区域的边界,强制离开计算区域的波满足某种近似的单向波方程。对于二维情况,Mur提出了两种阶数的 ABC。这里我们主要关注一阶 Mur ABC,因为它相对简单且在许多情况下效果良好。
需要注意的是,对于角落区域,简单的将两个一维 Mur ABC 应用可能会导致数值不稳定或吸收效果变差。更精确的处理角落的方法是考虑二维的单向波方程,但这会使公式变得更复杂。在许多实际应用中,简单地将两个相邻边界的一维 Mur ABC 应用到角落点通常是可以接受的,但这会引入一定的反射。
在实现时,通常的步骤是在每个时间步长内,先根据内部区域的 FDTD 迭代公式更新所有内部网格点的电场和磁场分量。然后,根据上述 Mur ABC 公式更新边界上的电场分量。由于磁场分量定义在网格边上,其边界处理也需要类似的方法,但这里主要以电场为例进行说明。
3. Mur ABC的应用与局限性
Mur吸收边界条件在许多2D FDTD应用中被广泛采用,因为它相对简单,容易理解和实现。它能够有效地吸收大部分正入射到边界的平面波。然而,Mur ABC也存在一定的局限性:
- 对掠射波的吸收效果较差:
Mur ABC 是基于单向波方程推导的,主要针对垂直入射到边界的波。对于掠射角较大的波,即以接近平行于边界的方向传播的波,Mur ABC 的吸收效果会显著下降,导致较强的边界反射。
- 对复杂波前吸收效果有限:
Mur ABC 对非平面波或具有复杂波前的波的吸收效果也有限。当波前弯曲或包含多个波分量时,简单的一阶单向波近似不再准确。
- 角落处理问题:
如前所述,简单地应用一维 Mur ABC 到角落区域会引入额外的反射。
- 与材料参数相关:
Mur ABC 的推导依赖于介质的传播速度 vv,因此在处理非均匀介质边界时需要特别小心。如果边界位于不同介质的交界处,简单应用自由空间的 Mur ABC 将不准确。
尽管存在这些局限性,Mur ABC 在许多实际应用中仍然是有效的。例如,在模拟天线在自由空间的辐射场时,如果计算区域设置得足够大,使得边界距离天线较远,则到达边界的波近似为平面波,此时 Mur ABC 可以提供较好的吸收效果。
为了克服 Mur ABC 的局限性,人们发展了更高级的吸收边界条件,例如完美匹配层(PML)。PML 是一种更通用的吸收边界条件,它通过在计算区域边界添加一个特殊的吸收层来吸收离开的电磁波。PML 在吸收各种角度和波前的波方面表现出色,但其实现相对复杂,计算开销也更大。
在实际应用中,选择合适的 ABC 取决于具体的模拟问题、所需的精度以及计算资源的限制。对于一些简单的应用,Mur ABC 可能已经足够满足要求。而对于需要高精度模拟或处理复杂场景的应用,则可能需要采用更高级的 ABC。
4. 总结
本文详细介绍了在具有Mur吸收边界条件的区域中应用的二维时域有限差分法。我们回顾了2D FDTD 方法的基本原理,详细推导并给出了Mur吸收边界条件在2D FDTD中的离散化实现公式。最后,我们讨论了Mur ABC的应用范围和主要的局限性。
Mur吸收边界条件作为一种相对简单有效的ABC,在二维FDTD模拟中发挥着重要作用,帮助我们在有限的计算区域内模拟电磁波在无界空间中的传播。理解其基本原理、实现方式以及局限性,对于进行准确有效的FDTD模拟至关重要。虽然存在更高级的ABC,但在许多情况下,Mur ABC 仍然是值得考虑的选项,尤其是在对计算效率有较高要求的场景下。未来的研究和应用将继续探索更高效、更准确的边界处理方法,以应对日益复杂的电磁场模拟挑战。
⛳️ 运行结果
🔗 参考文献
[1] 卞军峰,余春,钟顺时.采用PML吸收边界条件的FDTD法在分析波导不连续性中的应用[J].上海大学学报:自然科学版, 2002, 8(1):5.DOI:10.3969/j.issn.1007-2861.2002.01.002.
[2] 张清河.时域有限差分(FDTD)法中的吸收边界条件[J].三峡大学学报:自然科学版, 2004, 26(5):4.DOI:10.3969/j.issn.1672-948X.2004.05.024.
[3] 李嘉.路面雷达电磁波的时域有限差分法模拟[D].郑州大学,2005.DOI:10.7666/d.y782893.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇