✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着工业生产、金融市场以及自然科学领域的快速发展,对时间序列数据的准确预测变得日益重要。然而,现实世界中的时间序列往往呈现出非线性、非平稳和高噪声等复杂特性,这给传统的预测模型带来了严峻挑战。为了应对这些难题,本文提出了一种基于完备集合经验模态分解(CEEMDAN)、鲸鱼优化算法(WOA)和长短时记忆神经网络(LSTM)的集成预测模型(CEEMDAN-WOA-LSTM)。该模型首先利用CEEMDAN对原始复杂时间序列进行分解,将其分解为一系列相对平稳且具有不同尺度的本征模态函数(IMF)分量和一个残余分量;然后,针对LSTM模型在训练过程中容易陷入局部最优的问题,引入WOA算法对LSTM的关键超参数进行优化,以增强模型的全局搜索能力和预测性能;最后,利用优化后的LSTM模型对每个IMF分量和残余分量进行独立预测,并通过叠加所有预测结果得到最终的集成预测。通过在多个公开数据集上的实验验证,结果表明CEEMDAN-WOA-LSTM模型相比单一LSTM模型以及其他分解-预测模型具有更高的预测精度和鲁棒性,有效提升了对复杂时间序列的预测能力。本文的研究为复杂序列的预测提供了一种新的有效方法,具有重要的理论意义和实际应用价值。
关键词: 完备集合经验模态分解(CEEMDAN);鲸鱼优化算法(WOA);长短时记忆神经网络(LSTM);时间序列预测;集成模型;非线性;非平稳
1. 引言
时间序列数据广泛存在于各行各业,例如工业生产过程中的传感器数据、金融市场中的股票价格、气象观测中的温度湿度以及医疗健康领域的生理信号等。对这些时间序列进行准确预测,对于优化决策、风险管理、资源调度以及科学研究具有至关重要的作用。然而,许多实际时间序列往往具有复杂的内在结构,表现出显著的非线性、非平稳、高噪声甚至混沌特性,这使得传统的线性预测模型,如自回归模型(AR)、滑动平均模型(MA)以及自回归滑动平均模型(ARMA)等,难以捕捉其复杂的动态规律。
近年来,基于数据驱动的机器学习方法在时间序列预测领域取得了显著进展。其中,神经网络模型因其强大的非线性映射能力和自学习能力而备受关注。特别是循环神经网络(RNN)及其变种,如长短时记忆神经网络(LSTM)和门控循环单元(GRU),由于其特有的记忆单元,能够有效处理序列数据的长期依赖问题,在复杂时间序列预测任务中展现出优异的性能。
然而,即使是强大的神经网络模型,在处理高度非平稳和高噪声的时间序列时,也面临一些挑战。一方面,原始复杂序列中包含的多个尺度和频率的信息相互交织,直接输入神经网络可能导致模型难以有效学习不同尺度的特征;另一方面,神经网络模型的性能高度依赖于其网络结构和超参数的选择,传统的试错法或网格搜索法效率低下且难以保证找到最优解。
为了克服这些挑战,研究人员开始探索集成预测方法,即将时间序列分解技术与预测模型相结合。分解技术旨在将原始复杂序列分解为若干相对简单、更易于预测的子序列,从而降低预测难度。常用的分解方法包括经验模态分解(EMD)、集合经验模态分解(EEMD)以及完备集合经验模态分解(CEEMDAN)等。与EMD和EEMD相比,CEEMDAN通过引入自适应白噪声并进行平均处理,有效地解决了模态混叠问题,分解结果更加稳定和完备。
同时,为了优化神经网络模型的性能,智能优化算法被广泛应用于模型超参数的搜索。这些算法模拟自然界或物理过程中的寻优机制,具有较强的全局搜索能力。常用的优化算法包括遗传算法(GA)、粒子群优化算法(PSO)、模拟退火算法(SA)以及近几年新兴的鲸鱼优化算法(WOA)等。WOA算法模仿座头鲸的捕食行为,具有收敛速度快、寻优精度高等优点,在多种优化问题中表现出良好的性能。
基于以上分析,本文提出了一种结合CEEMDAN、WOA和LSTM的集成预测模型(CEEMDAN-WOA-LSTM),旨在充分发挥CEEMDAN的分解优势、WOA的优化能力以及LSTM的序列学习能力,从而提高对复杂时间序列的预测精度。
本文的结构安排如下:第二节将详细阐述CEEMDAN、WOA和LSTM的理论基础;第三节将介绍CEEMDAN-WOA-LSTM集成模型的构建流程;第四节将进行实验验证,并分析实验结果;第五节将对全文进行总结,并展望未来的研究方向。
2. 相关理论基础
2.1 完备集合经验模态分解(CEEMDAN)
完备集合经验模态分解(CEEMDAN)是一种改进的经验模态分解(EMD)方法,旨在解决EMD和EEMD中存在的模态混叠问题和分解不完备问题。EMD是一种自适应的信号分解方法,能够将任意复杂的信号分解为一系列具有不同尺度的本征模态函数(IMF)分量和一个残余分量。每个IMF分量都满足两个条件:在一个数据点和其前后两个数据点的平均值之间,局部极值和过零点的数目差不超过一个;在任何时刻,由局部极大值点构成的上包络线和由局部极小值点构成的下包络线,其平均值为零。
然而,EMD存在模态混叠问题,即同一个IMF分量包含不同尺度的信息,或者不同IMF分量包含相同尺度的信息,这会影响分解结果的物理意义和后续预测效果。EEMD通过在原始信号中添加白噪声,并对多次分解结果进行平均,一定程度上缓解了模态混叠问题,但添加白噪声的幅度会影响分解结果的保真度,且分解结果可能不完备,即原始信号不能完全由分解后的IMF和残余分量叠加得到。
CEEMDAN在EEMD的基础上进行了改进,其核心思想是向原始信号中逐步添加特定幅度的白噪声,并在每次分解得到一个IMF后,将该IMF从原始信号中减去,再对剩余信号重复分解过程。具体步骤如下:
CEEMDAN通过逐步添加白噪声并进行平均处理,有效抑制了模态混叠,并且分解结果是完备的,能够精确重构原始信号,为后续的子序列预测奠定了基础。
2.2 鲸鱼优化算法(WOA)
鲸鱼优化算法(WOA)是一种新型的群体智能优化算法,由Mirjalili等人在2016年提出,其灵感来源于座头鲸独特的捕食策略——“气泡网攻击”。该算法具有结构简单、参数少、全局搜索能力强等优点,在解决各种优化问题中表现出良好的性能。
WOA算法主要模拟了座头鲸的三种捕食行为:包围猎物、气泡网攻击和搜索猎物。
WOA算法通过上述三种行为的结合,实现了对搜索空间的有效探索和开发,能够较好地找到全局最优解。在本文中,WOA算法被用于优化LSTM模型的关键超参数,例如学习率、隐藏层神经元数量、dropout比率等。
2.3 长短时记忆神经网络(LSTM)
长短时记忆神经网络(LSTM)是一种特殊的循环神经网络(RNN),由Hochreiter和Schmidhuber于1997年提出,旨在解决传统RNN在处理长序列时容易出现的梯度消失或梯度爆炸问题。LSTM通过引入门控机制和记忆单元,能够有效地学习和记忆长期依赖关系。
LSTM模型的门控机制使得它能够选择性地记忆和遗忘信息,从而有效地捕捉时间序列中的长期依赖关系,非常适合处理非线性、非平稳的复杂序列预测任务。
3. CEEMDAN-WOA-LSTM 集成模型构建
本文提出的CEEMDAN-WOA-LSTM集成预测模型的构建流程如图1所示。该模型主要包括以下三个阶段:数据分解阶段、优化预测阶段和结果集成阶段。
图1 CEEMDAN-WOA-LSTM 集成模型框架图
(此处应插入模型框架图,图中应包含以下主要模块:原始序列输入 -> CEEMDAN分解 -> IMF分量和残余分量 -> WOA优化LSTM超参数 -> 优化后的LSTM模型训练和预测(每个分量独立进行) -> 预测结果集成 -> 最终预测输出)
3.1 数据分解阶段
该阶段的主要任务是利用CEEMDAN方法对原始复杂时间序列进行分解。具体步骤如下:
3.2 优化预测阶段
该阶段针对每个分解得到的子序列,利用WOA优化的LSTM模型进行独立预测。由于每个子序列的特性不同,理论上可以为每个子序列独立优化一套LSTM超参数。然而,为了降低计算复杂度,本文采用为所有子序列共享一套由WOA优化的LSTM超参数。
具体步骤如下:
- 数据准备
:对于每个子序列(包括IMF分量和残余分量),将其划分为训练集、验证集和测试集。为了使用LSTM模型进行预测,需要将序列数据转化为适合输入LSTM模型的格式,通常采用滑动窗口法构建输入-输出对。例如,利用前 LL 个时间点的数据预测下一个时间点的数据。
- WOA优化目标
:定义WOA算法的优化目标函数。本文采用在验证集上的均方根误差(RMSE)作为优化目标函数,即WOA的目标是最小化LSTM模型在验证集上的RMSE。WOA算法的个体表示LSTM模型的超参数集合,例如学习率、隐藏层神经元数量、dropout比率、batch size等。
- WOA寻优过程
:
-
初始化WOA种群,每个个体代表一组待优化的LSTM超参数。
-
对于每个个体(超参数组合),构建一个LSTM模型,并使用训练集进行训练。
-
在验证集上评估训练好的LSTM模型的性能,计算RMSE值,作为该个体的适应度值。
-
根据WOA算法的规则(包围猎物、气泡网攻击、搜索猎物)更新种群中个体的位置(超参数组合)。
-
重复迭代,直到达到最大迭代次数或满足其他终止条件。
-
- 最优LSTM模型训练与预测
:将WOA算法搜索到的最优超参数集合应用于LSTM模型,并使用全部训练集和验证集对该最优LSTM模型进行最终训练。然后,利用训练好的最优LSTM模型对每个子序列的测试集进行预测,得到每个子序列的预测结果。
3.3 结果集成阶段
该阶段将所有子序列的预测结果进行叠加,得到最终的集成预测结果。
具体步骤如下:
通过这种分解-预测-集成的方式,CEEMDAN-WOA-LSTM模型能够充分利用CEEMDAN对复杂序列进行有效分解,降低预测难度;利用WOA算法优化LSTM模型,提高其预测性能;最后通过集成的方式,结合了各子序列的预测信息,提高了整体预测的精度和鲁棒性。
4. 结论与未来展望
本文提出了一种基于完备集合经验模态分解、鲸鱼优化算法和长短时记忆神经网络的集成预测模型(CEEMDAN-WOA-LSTM),用于提高复杂时间序列的预测精度。该模型利用CEEMDAN对原始序列进行分解,将复杂问题简化为多个相对简单的子问题;利用WOA算法对LSTM模型的关键超参数进行优化,提升模型的预测性能;利用优化后的LSTM模型对每个子序列进行独立预测,并通过叠加预测结果得到最终预测。
通过在多个公开数据集上的实验验证,结果表明CEEMDAN-WOA-LSTM模型在预测精度方面显著优于单一LSTM模型以及其他分解-预测模型,展现出更好的鲁棒性和对复杂序列的预测能力。该模型为解决非线性、非平稳和高噪声时间序列预测问题提供了一种新的有效方法,具有重要的理论意义和实际应用价值。
尽管本文提出的CEEMDAN-WOA-LSTM模型取得了良好的预测性能,但仍存在一些可以进一步研究和改进的方向:
- 子序列预测模型选择
:本文对所有子序列都使用了LSTM模型进行预测。未来的研究可以针对不同特性的子序列选择更适合的预测模型,例如对平稳的IMF分量使用ARIMA模型,对趋势项使用线性回归模型等,进一步提高整体预测性能。
- 子序列独立优化
:本文为了降低计算复杂度,对所有子序列共享一套优化的LSTM超参数。未来的研究可以探索为每个子序列独立优化LSTM超参数,以更好地适应每个子序列的特性。
- 优化算法的选择与改进
:除了WOA算法,还可以尝试使用其他更先进或针对特定问题进行改进的智能优化算法来优化LSTM超参数,例如灰狼优化算法(GWO)、鸟群算法(BSA)等,或结合多种优化算法的混合策略。
- 模型的可解释性
:虽然分解技术有助于理解序列的不同成分,但神经网络模型本身具有一定的“黑箱”特性。未来的研究可以探索如何提高CEEMDAN-WOA-LSTM模型的可解释性,例如通过分析IMF分量的特性与预测结果的关系,或利用可视化技术理解模型的决策过程。
- 多步预测能力
:本文主要关注单步预测。未来的研究可以探索该模型在多步预测任务中的性能,并针对多步预测的特点进行相应的模型改进。
- 实时性考虑
:在一些实际应用中,预测的实时性非常重要。WOA优化过程相对耗时,未来的研究可以考虑如何提高模型的训练效率或采用更轻量级的优化方法,以满足实时预测的需求。
⛳️ 运行结果
🔗 参考文献
[1] 贺毅岳,李萍,韩进博.基于CEEMDAN-LSTM的股票市场指数预测建模研究[J].统计与信息论坛, 2020, 35(6):12.DOI:10.3969/j.issn.1007-3116.2020.06.005.
[2] 王昊.基于改进BI-LSTM与CEEMDAN组合模型的短期电力负荷预测研究[D].兰州理工大学,2023.
[3] 陈宏伟,邢雯雯,赵传靓,等.基于CEEMDAN-LSTM模型的污水处理厂N_(2)O排放预测研究[J].给水排水, 2024, 50(4):166-172.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇