✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着全球能源结构的深刻变革和可持续发展的迫切需求,多区域综合能源系统(Multi-Regional Integrated Energy System, MIES)以其能源互联互通、梯级利用和协同优化的优势,正成为构建新型电力系统和实现碳中和目标的重要路径。在MIES中,热能作为一种重要的能源形式,其在区域间的传输与分配对于系统整体效率和运行成本具有决定性影响。本文聚焦于多区域综合能源系统中热网的精细化建模及其与系统运行优化相结合的关键技术,旨在复现和深入探讨EI收录相关高水平研究的成果。通过对跨区域热能传输特性、热网的动态行为以及与其他能源子系统(电力、天然气等)的耦合关系进行系统性分析与建模,并在此基础上构建多目标、多约束的系统运行优化模型,本文旨在为提升MIES的运行可靠性、经济性和环境效益提供理论支撑和技术指导。
关键词: 多区域综合能源系统;热网建模;运行优化;能源互联;EI复现
引言
近年来,能源系统正经历从单一、独立的能源供应模式向多元化、集成化的方向转变。多区域综合能源系统作为一种将不同区域的能源基础设施(如电源、热源、储能、能源网络)互联互通、协同运行的新型能源形态,展现出巨大的发展潜力。MIES通过实现能源在不同区域、不同形式之间的灵活转换和高效利用,能够有效消纳间歇性可再生能源,提升能源利用效率,降低碳排放,为构建智慧能源系统和实现低碳社会目标提供有力支持。
在MIES中,热能作为工业、建筑和生活领域不可或缺的能源载体,其可靠、经济的供应至关重要。传统的区域热网通常独立运行,难以实现跨区域的热能共享和协同调度。而在多区域环境下,通过建设区域间热网互联通道,可以有效平衡不同区域的热负荷需求和热源出力,提高热网的灵活性和鲁棒性。然而,跨区域热网的复杂性、动态特性以及与其他能源子系统的紧密耦合,对系统的建模与优化提出了严峻挑战。例如,热网的温度、压力、流量等参数随时间和空间的动态变化,热能在传输过程中的能量损耗,以及与电力、天然气等网络在能量转换环节的相互影响,都需要在Mighty MIES的整体运行优化中得到充分考虑。
目前,学术界在MIES的研究领域取得了丰硕成果,其中不乏EI等国际权威索引收录的高水平论文。这些研究为多区域综合能源系统的规划、设计和运行提供了宝贵的理论基础和技术方法。本文的重点在于复现和深入探讨EI收录的优秀成果,特别是关于多区域综合能源系统热网建模及其与系统运行优化相结合的关键技术。通过对相关文献进行系统梳理和分析,理解其核心思想、建模方法和优化策略,并尝试基于公开数据或模拟环境进行复现验证,旨在进一步深化对该领域的认知,并为后续研究提供借鉴和启示。
1. 多区域综合能源系统热网的建模
热网作为MIES中的重要组成部分,其精确建模是实现系统优化运行的前提。与传统的单区域热网不同,多区域热网的建模需要考虑区域间的连接方式、传输距离、网络结构以及不同区域热源和热负荷的特性差异。本节将详细探讨多区域综合能源系统热网的建模方法,重点关注EI收录文献中常用的技术手段。
1.1 热网物理模型
热网的物理模型主要描述了热能在管道中的传输过程以及各个组成部分的能量和质量守恒关系。对于多区域热网,常见的物理模型包括:
- 稳态模型:
在稳态条件下,忽略热网参数随时间的动态变化,主要关注节点温度、压力和管道流量的平衡。这种模型适用于长周期或规划层面的分析,计算效率较高,但在处理动态变化频繁的运行调度问题时存在局限性。
- 动态模型:
考虑热网参数随时间的动态变化,能够更准确地描述热网的瞬态行为,例如温度波、压力波的传播以及储热系统的充放热过程。动态模型对于精细化运行调度和故障分析至关重要,但计算复杂度较高。EI收录文献中,常用的动态建模方法包括:
- 集总参数模型:
将热网管道简化为集总的电阻、电容等元件,通过ODE(常微分方程)或代数方程组来描述系统动态。这种方法模型简单,易于求解。
- 分布式参数模型:
考虑热网管道内部温度、压力、流量沿空间的分布,通过PDE(偏微分方程)来描述系统动态。这种模型精度更高,但求解难度较大,常采用有限差分法、有限元法等数值方法进行离散化求解。
- 基于传递函数的模型:
将热网视为一个动态系统,通过传递函数或状态空间模型来描述输入(如热源出力、负荷变化)与输出(如节点温度、流量)之间的关系。这种方法便于与控制理论相结合。
- 集总参数模型:
针对多区域热网,建模时需要特别关注区域间的连接管道,其长度、直径、保温性能等参数直接影响热能在跨区域传输过程中的损耗和时间延迟。此外,不同区域热网的拓扑结构、管道材质、流量控制阀门、循环水泵等设备特性也需要被准确建模。
1.2 热网能量损耗模型
热网在传输过程中不可避免地会发生能量损耗,主要包括管道散热损耗和水力摩擦损耗。精确的损耗模型对于评估热网效率和优化运行策略至关重要。
- 管道散热损耗:
热水在管道中传输时,与外界环境存在温差,会导致热量散失。散热损耗主要取决于管道长度、直径、保温性能、环境温度以及热水温度。通常采用传热学原理进行建模,将管道视为一个圆柱体,通过对流和辐射换热计算散热功率。在动态模型中,还需要考虑管道壁的蓄热效应。
- 水力摩擦损耗:
热水在管道中流动时,由于水的粘滞性和管道内壁的摩擦,会产生压力损失。水力摩擦损耗与管道长度、直径、流速、流体性质以及管道内壁粗糙度有关。通常采用达西-威斯巴赫公式或哈根-泊肃叶公式进行计算。水力摩擦损耗会增加循环水泵的能耗,进而影响系统的整体运行成本。
1.3 热网与能源子系统的耦合模型
多区域综合能源系统中,热网与其他能源子系统(如电力网、天然气网)存在紧密的耦合关系。这种耦合主要体现在能源转换设备(如热电联产机组CHP、燃气锅炉、电锅炉、热泵)以及储能设备(如蓄热罐)。
- 热电联产(CHP)机组:
CHP机组能够同时产生电能和热能,是实现能源梯级利用的关键设备。其运行特性(如出力范围、热电比、效率)对热网和电力网的运行都有重要影响。建模时需要考虑CHP机组的出力耦合关系,通常采用出力特性曲线或数学模型来描述。
- 电锅炉、热泵:
电锅炉和热泵将电能转换为热能,是实现电热耦合的重要方式。其运行效率受输入电功率、输出热功率以及环境温度等因素影响。建模时需要考虑其能源转换效率和出力特性。
- 燃气锅炉:
燃气锅炉将天然气燃烧产生的热能转换为热水,是传统热源之一。建模时需要考虑其燃料消耗与热出力之间的关系。
- 蓄热罐:
蓄热罐能够储存热能,具有削峰填谷、平衡供需的作用。建模时需要考虑蓄热罐的充放热功率、储热容量、热损失等参数。
在多区域MIES中,区域间的能源转换设备可能位于不同的区域,通过区域间网络实现能源交换。因此,在耦合建模时,需要清晰界定各设备的所属区域及其与区域内外部网络的连接关系。
2. 多区域综合能源系统运行优化
在构建了精确的热网模型以及与其他能源子系统的耦合模型后,即可在此基础上进行多区域综合能源系统的运行优化。运行优化旨在通过合理调度各区域内的能源设备以及区域间的能源传输,以实现系统运行成本最低、环境效益最佳、运行可靠性最高等目标。
2.1 优化目标
多区域综合能源系统的运行优化通常涉及多个目标函数,常见的包括:
- 经济性目标:
最小化系统总运行成本,包括燃料成本、购电成本、碳排放成本、设备运行维护成本等。
- 环境性目标:
最小化系统的碳排放量、污染物排放量等。
- 可靠性目标:
提高系统的供能可靠性,如满足用户的热负荷和电负荷需求,避免能源中断。
- 效率性目标:
最大化系统的能源利用效率。
在实际优化问题中,通常采用多目标优化方法或将多个目标函数进行加权或转化为约束条件来处理。例如,可以将碳排放量作为约束,在满足排放限制的前提下最小化运行成本。
2.2 约束条件
系统运行优化必须满足一系列物理约束和运行约束,包括:
- 能量平衡约束:
各区域内和区域间的电能、热能、天然气等能量在任意时刻都必须满足供需平衡。
- 设备运行约束:
各能源设备的出力范围、启动/停机成本、爬坡速率等物理特性限制。
- 网络运行约束:
电力网络的潮流约束、热网的流量平衡和温度/压力约束、天然气网络的压力和流量约束等。对于多区域网络,还需要考虑区域间联络线的传输容量限制。
- 储能系统约束:
储能系统的荷电状态、充放电功率限制。
- 需求响应约束:
考虑用户参与需求响应时,负荷可调整的范围和响应特性。
2.3 优化模型与求解方法
基于上述目标函数和约束条件,多区域综合能源系统的运行优化问题通常可以构建为以下数学模型:
- 混合整数线性规划(MILP):
当设备的运行状态(如开/停机)为二元变量,其他变量为连续变量,且所有约束和目标函数均为线性的情况下,可采用MILP模型。MILP模型能够保证求解的全局最优解,但计算复杂度随问题规模呈指数增长。
- 非线性规划(NLP):
当系统中存在非线性的设备特性(如效率曲线)或网络潮流方程时,需要采用NLP模型。NLP模型求解难度较大,容易陷入局部最优解。
- 混合整数非线性规划(MINLP):
结合了MILP和NLP的特点,适用于包含二元变量和非线性约束的问题。求解难度最大。
针对不同类型的优化模型,可以采用相应的求解算法:
- 商业优化器:
如CPLEX, Gurobi等,适用于求解MILP和MIP(混合整数规划)问题,效率高且稳定。
- 内点法、序列二次规划(SQP)等:
适用于求解NLP问题。
- 分解协调算法:
对于大规模的多区域MIES,直接求解整体优化问题计算量巨大。可以采用分解协调算法将整体问题分解为若干子问题(如各区域内部优化和区域间协调),通过迭代求解子问题并协调区域间的耦合变量,最终收敛到整体最优解。常见的分解算法包括拉格朗日松弛法、Benders分解法等。
- 启发式算法和智能算法:
当问题模型复杂或规模过大,难以用精确算法求解时,可以采用遗传算法、粒子群优化、模拟退火等启发式或智能算法寻找近似最优解。
在EI收录的文献中,研究人员通常会根据具体问题的特点和计算资源限制,选择合适的优化模型和求解方法。例如,对于实时运行调度问题,可能会倾向于采用计算效率较高的线性化模型和快速求解算法;而对于规划层面的问题,则可以采用更精确的非线性模型和离线求解方法。
3. EI收录文献的复现与分析
本节将重点探讨如何复现和分析EI收录的高水平文献,并基于复现过程中的经验进行讨论。
3.1 文献筛选与复现目标
首先,需要通过学术搜索引擎(如IEEE Xplore, ScienceDirect, Scopus等)检索与“Multi-Regional Integrated Energy System”, “District Heating Network Modeling”, “Operation Optimization”等关键词相关的EI收录文献。在筛选文献时,应关注以下方面:
- 研究主题的相关性:
论文是否聚焦于多区域综合能源系统中的热网建模和运行优化。
- 建模方法的先进性:
论文采用的热网建模方法是否具有代表性或创新性。
- 优化策略的有效性:
论文提出的运行优化模型和求解算法是否能够有效提升系统性能。
- 数据的可获取性:
论文是否提供了公开的数据集、案例研究或足够详细的模型参数,以便进行复现。
- 研究的严谨性:
论文的方法描述是否清晰、结论是否可靠。
确定复现目标后,应仔细研读所选文献,理解其研究背景、提出的方法、模型假设、实验设置和结果分析。
3.2 模型构建与参数设置
根据文献中描述的数学模型,在合适的编程环境(如MATLAB, Python等)或优化软件(如GAMS, AMPL等)中构建相应的数学模型。这包括:
- 定义变量:
包括决策变量(如设备出力、网络流量)、状态变量(如节点温度、储能荷电状态)等。
- 构建目标函数和约束条件:
根据文献中的数学表达式,将目标函数和各类约束条件转化为计算机可识别的形式。
- 设置模型参数:
根据文献提供的案例数据或模拟参数,设置设备的物理参数、网络参数、负荷数据、能源价格等。如果文献未提供详细数据,则需要根据实际情况或参考文献进行合理的假设和估算。
在模型构建过程中,需要特别关注文献中的细节,例如模型的线性化处理、离散化方法、边界条件等,确保模型能够准确反映文献中的研究内容。
3.3 求解与结果分析
选择合适的求解器或算法对构建的优化模型进行求解。在求解过程中,需要注意以下几点:
- 求解算法的选择:
根据模型的类型(MILP, NLP, MINLP),选择合适的求解算法。对于复杂问题,可能需要尝试不同的算法或参数设置。
- 收敛性判断:
对于迭代求解算法,需要设置合理的收敛准则,判断算法是否收敛到最优解。
- 结果验证:
对求解结果进行验证,检查是否满足所有约束条件。
- 结果分析:
对求解得到的最优解进行深入分析,理解不同决策变量的取值对系统性能的影响,例如不同区域热源的出力分配、区域间热能传输的流量和方向、储热系统的运行策略等。将复现结果与文献中的结果进行对比,分析差异产生的原因。差异可能来源于模型实现的细微差别、求解算法的精度、计算环境的差异等。
3.4 经验与挑战
在复现EI收录文献的过程中,可能会遇到一些挑战:
- 模型细节的缺失:
部分文献可能为了篇幅限制,省略了模型的某些细节或参数设置,需要根据专业知识进行推断或查阅其他相关文献。
- 数据的难以获取:
即使文献提供了案例研究,可能也未提供完整的原始数据,需要进行数据处理或生成模拟数据。
- 计算资源的限制:
大规模的MIES优化问题可能需要大量的计算资源和较长的求解时间。
- 软件和算法的掌握:
需要熟悉相关的建模语言和优化软件,以及不同求解算法的原理和应用。
通过复现,可以更深入地理解文献的核心思想、方法和技术,发现其中的创新点和潜在问题。同时,复现过程也是一个学习和实践的过程,能够提升自身的建模和优化能力。
4. 多区域综合能源系统热网建模及运行优化的前沿方向
基于对EI收录文献的复现和分析,可以发现多区域综合能源系统热网建模和运行优化领域仍然存在许多值得深入研究的前沿方向:
- 不确定性优化:
考虑到可再生能源出力、负荷需求、能源价格等因素的不确定性,如何构建考虑不确定性的热网建模和运行优化模型,提高系统的鲁棒性和应对风险的能力。常用的方法包括鲁棒优化、随机优化、场景分析等。
- 数据驱动的建模与优化:
利用大数据和机器学习技术,从历史运行数据中学习热网的动态特性、设备性能以及用户行为模式,构建数据驱动的模型,并在此基础上进行优化。
- 热网储能的精细化控制:
蓄热罐在多区域热网中具有重要作用,如何设计精细化的储热系统控制策略,实现热能的跨时空转移和平衡,进一步提升系统灵活性。
- 区域间热网的协同规划与运行:
除了运行优化,如何从规划层面考虑多区域热网的互联方式、管道参数、热源选址等问题,实现区域能源基础设施的协同发展。
- 网络安全与隐私保护:
在多区域能源系统互联互通的背景下,如何保障热网运行数据的安全性和用户的隐私。
- 韧性与故障恢复:
如何提高多区域热网在自然灾害或设备故障等异常情况下的韧性,并设计快速有效的故障恢复策略。
结论
多区域综合能源系统热网的精细化建模和运行优化是实现系统高效、可靠、经济运行的关键。本文通过对EI收录相关高水平研究的复现和深入探讨,系统梳理了多区域综合能源系统热网的物理建模、能量损耗建模、与其他能源子系统的耦合建模方法,并分析了系统运行优化的目标、约束和求解方法。复现过程有助于加深对该领域理论和技术的理解,同时揭示了实际操作中可能遇到的挑战。
未来,多区域综合能源系统热网的研究将更加关注不确定性、数据驱动、精细化控制、协同规划以及安全韧性等方面。通过持续的研究和技术创新,有望进一步提升多区域综合能源系统的整体性能,为构建清洁低碳、安全高效的现代能源体系贡献力量。复现和借鉴EI收录的优秀研究成果,是推动该领域持续发展的重要途径。
⛳️ 运行结果
🔗 参考文献
[1] 唐振.大型变速恒频风力发电机组建模与仿真[J].工程技术(引文版):00285-00286[2025-05-20].
[2] 袁爱民,戴航,孙大松.基于EI及MAC混合算法的斜拉桥传感器优化布置[J].振动.测试与诊断, 2009, 29(1):5.DOI:10.3969/j.issn.1004-6801.2009.01.013.
[3] 袁爱民,戴航,孙大松.基于EI及MAC混合算法的斜拉桥传感器优化布置[J].振动、测试与诊断, 2009.DOI:JournalArticle/5af2dc8fc095d718d8fec23b.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇