✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代社会,电力作为驱动经济发展和维持日常生活运转的核心能源,其稳定可靠的供应至关重要。随着可再生能源的快速渗透和分布式能源系统的日益普及,电力系统面临的负荷波动性显著增加,这使得精准的负荷预测成为电网安全稳定运行、高效能源管理以及电力市场有效运作的关键支撑。传统的负荷预测方法,无论是基于统计学模型(如ARIMA、指数平滑)还是简单的机器学习模型(如SVM、决策树),在处理复杂、非线性和多变的电力负荷数据时,往往难以捕捉其深层特征和动态演变规律。因此,开发更先进、更鲁棒的负荷预测模型已成为能源领域研究的热点和焦点。
本文旨在探讨基于CEEMDAN-CNN-LSTM的负荷预测方法,并深入分析其在电力负荷预测中的理论基础、优势以及应用前景。该方法巧妙地融合了集合经验模态分解(CEEMDAN)、卷积神经网络(CNN)和长短期记忆网络(LSTM)的优势,形成了一个多层次、多尺度的复合预测框架,旨在提升预测精度和稳定性。
一、 负荷预测的挑战与传统方法的局限性
电力负荷数据具有显著的非线性和非平稳性特征,其变化受到多种因素的综合影响,包括但不限于:
- 周期性因素
:日周期(高峰、低谷)、周周期(工作日、周末)、年周期(季节性变化、节假日)。
- 气象因素
:温度、湿度、风速、光照等,这些因素与负荷呈现复杂的非线性关系。
- 社会经济因素
:人口结构、产业结构、经济发展水平、突发事件(如疫情、灾害)。
- 偶发性因素
:随机波动、测量误差等。
传统的负荷预测方法在应对这些挑战时,往往暴露出以下局限性:
- 统计学模型
:如ARIMA、SARIMA等,依赖于数据的平稳性假设,难以有效处理负荷数据的非线性和非平稳特征,且对异常值敏感。
- 传统机器学习模型
:如支持向量机(SVM)、决策树、随机森林等,虽然在一定程度上能够处理非线性问题,但对长序列数据的时序特征捕捉能力有限,且对特征工程的依赖性较强。
- 单一深度学习模型
:如单独使用LSTM或CNN,虽然能够捕捉时序或局部特征,但在处理既有复杂局部特征又有长期依赖关系的负荷数据时,可能无法同时发挥最佳效能。例如,LSTM擅长处理时序依赖,但对局部特征的提取能力相对较弱;CNN擅长局部特征提取,但对长时序依赖的捕捉则不及其它模型。
因此,为了克服上述局限,需要一种能够有效分解复杂数据、提取多尺度特征并捕捉长期时序依赖的综合性预测模型。
二、 CEEMDAN-CNN-LSTM复合预测模型的理论基础
CEEMDAN-CNN-LSTM模型之所以能够有效提升负荷预测精度,在于其对负荷数据进行了多层次的深度挖掘和分析。
1. CEEMDAN(Complete Ensemble Empirical Mode Decomposition with Adaptive Noise)
CEEMDAN是EMD(经验模态分解)的改进版本,旨在解决EMD和EEMD(集合经验模态分解)中存在的模态混叠和残余噪声问题。其核心思想是:
- 自适应噪声
:在EMD分解过程中,逐步加入白噪声,以辅助区分不同频率的振荡模式,并减少模态混叠。
- 集成平均
:通过多次加入不同的高斯白噪声进行分解,并对所得的模态分量进行平均,从而抵消噪声的影响,得到更真实的固有模态函数(IMFs)和残余分量(Res)。
- 完整性
:确保分解结果的完整性,即所有IMFs和残余分量的和能够精确重构原始信号。
通过CEEMDAN分解,复杂的、非线性和非平稳的原始负荷序列被分解成一系列具有不同频率特性的IMFs和趋势分量。这些IMFs分量分别代表了负荷在不同时间尺度上的波动模式,例如高频分量可能反映短期随机波动,中频分量可能反映日/周周期波动,而低频分量或残余分量则反映长期趋势。这种分解有助于降低每个子序列的复杂性,使其更易于模型学习和预测。
2. CNN(Convolutional Neural Network)
CNN是一种专为处理具有网格状拓扑结构数据(如图像、时间序列)而设计的深度学习模型。其在负荷预测中的应用主要体现在:
- 局部特征提取
:通过卷积核在输入序列上滑动,可以自动学习和提取局部、短期的特征。例如,在负荷数据中,CNN可以有效捕捉到相邻时刻的负荷变化模式、局部峰谷值等。
- 权值共享与池化
:卷积层通过权值共享大幅减少模型参数,降低过拟合风险;池化层则用于降维,提取更显著的特征并提升模型的平移不变性。
- 多层感知
:多层卷积层和池化层的堆叠,可以逐步提取更抽象、更高层次的特征,从原始数据中发现深层规律。
在CEEMDAN-CNN-LSTM框架中,CNN可以对CEEMDAN分解后的各个IMFs分量进行特征提取,尤其是对于高频分量,其包含的局部波动信息可以通过CNN有效捕捉。
3. LSTM(Long Short-Term Memory Network)
LSTM是循环神经网络(RNN)的一种变体,专门设计用于解决传统RNN在处理长序列时遇到的梯度消失或梯度爆炸问题,从而有效捕捉长期的时序依赖关系。
- 门控机制
:LSTM的核心是其内部的“门”结构——输入门、遗忘门和输出门。这些门通过Sigmoid激活函数控制信息在细胞状态中的流动和更新,使得网络能够选择性地记住或遗忘过去的信息。
- 细胞状态
:LSTM引入了一个独立的细胞状态(Cell State),它类似于一条“传送带”,贯穿整个链条,允许信息在不发生重大改变的情况下流过。
- 长期依赖捕捉
:通过门控机制和细胞状态,LSTM能够有效地学习并记忆跨越时间步的长期模式,这对于预测具有明显周期性和趋势性的电力负荷数据至关重要。
在CEEMDAN-CNN-LSTM框架中,LSTM作为最终的预测模块,负责处理CEEMDAN分解后的各IMFs分量和趋势分量,以及CNN提取的局部特征。它能够捕捉这些分量内部和分量之间的长期依赖关系,并最终输出预测结果。
三、 CEEMDAN-CNN-LSTM复合预测模型的构建与流程
CEEMDAN-CNN-LSTM模型的构建流程通常包括以下几个关键步骤:
-
数据预处理与特征工程:
- 数据清洗
:处理缺失值、异常值。
- 特征选择
:根据历史经验和相关性分析,选择影响负荷的关键特征,如历史负荷数据、日期类型(工作日/周末/节假日)、气象数据(温度、湿度、风速、降雨量等)。
- 归一化
:对所有输入特征进行归一化处理,消除不同量纲的影响,加速模型收敛。
- 数据清洗
-
CEEMDAN分解:
-
将预处理后的原始负荷序列输入CEEMDAN算法,将其分解成一系列独立的IMFs分量和一个残余分量。通常,IMFs的数量取决于原始信号的复杂性。
-
-
子序列特征提取与预测:
- 高频与中频IMFs处理(CNN-LSTM)
:对于分解出的高频和部分中频IMFs分量,它们通常包含局部波动信息和周期性较强的特征。可以为每个或每组这类IMFs构建一个独立的CNN-LSTM子模型。CNN用于捕捉每个IMF的局部特征,然后将CNN的输出作为LSTM的输入,由LSTM学习其时序依赖并进行预测。
- 低频IMFs与残余分量处理(LSTM或其它模型)
:对于低频IMFs和残余分量,它们通常代表负荷的长期趋势和低频波动。这些分量可以直接输入LSTM模型进行预测,因为其时序依赖性更为显著。或者,也可以考虑使用简单的线性模型(如ARIMA)或其它回归模型进行预测,以适应其平稳性较好的特点。
- 高频与中频IMFs处理(CNN-LSTM)
-
预测结果集成:
-
将所有子模型对各自IMFs分量的预测结果进行累加重构,得到最终的负荷预测结果。
-
-
模型评估与优化:
-
采用均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)等指标对模型的预测精度进行评估。
-
根据评估结果,对模型参数(如CNN的卷积核大小、LSTM的隐藏层单元数、训练批次大小、学习率等)进行调优,以提升模型性能。
-
四、 CEEMDAN-CNN-LSTM模型的优势
CEEMDAN-CNN-LSTM复合模型相较于单一模型或传统方法,具有以下显著优势:
- “分而治之”策略
:CEEMDAN的分解有效地降低了原始负荷数据的非线性和非平稳性,使得后续的预测模型能够更专注于学习每个子序列的特定模式,从而降低了预测难度。
- 多尺度特征捕获
:CNN擅长捕获局部特征,LSTM擅长捕获长期依赖。这种结合使得模型能够同时从不同时间尺度(由CEEMDAN分解)和不同抽象层次(由CNN和LSTM的协同作用)上捕捉负荷数据中的复杂模式。
- 鲁棒性提升
:通过对原始信号进行分解,模型在一定程度上能够减少噪声和异常值对整体预测的干扰,因为这些干扰可能集中在高频IMFs中,而低频IMFs则保持相对稳定。
- 高预测精度
:实证研究表明,结合CEEMDAN、CNN和LSTM的模型在短期和中长期负荷预测中,通常能取得优于单一模型或传统方法的预测精度。
- 适应性强
:该框架具有较强的泛化能力,能够适应不同时间粒度(如小时、日、周)和不同区域的负荷预测任务。
五、 挑战与未来展望
尽管CEEMDAN-CNN-LSTM模型展现出强大的预测能力,但在实际应用中仍面临一些挑战和值得深入研究的方向:
- 计算复杂度
:CEEMDAN分解本身具有一定的计算成本,尤其是在处理大规模、高频率数据时。此外,多个CNN-LSTM子模型的训练也增加了计算资源的需求。
- 参数调优复杂性
:模型的整体参数数量较多,包括CEEMDAN的分解参数、CNN和LSTM的结构参数、训练超参数等,有效的参数调优需要经验和计算资源。
- 实时性要求
:对于超短期负荷预测,模型的训练和推理速度是关键。如何在保证精度的前提下,进一步优化模型的实时性,是一个重要的研究方向。
- 模型可解释性
:深度学习模型普遍存在“黑箱”问题,其内部决策机制难以解释。提升负荷预测模型的可解释性,有助于电力系统运行人员更好地理解预测结果并做出决策。
- 外部因素的动态融合
:目前模型主要依赖于历史负荷和气象数据。未来可以进一步探索如何动态融合更多外部因素,如政策变化、社交媒体情绪、经济指标等,以应对更复杂的社会经济环境变化对负荷的影响。
- 迁移学习与小样本学习
:在电力系统新区域建设或发生重大结构变化时,历史数据可能不足。研究如何应用迁移学习或小样本学习技术,将已有模型的知识迁移到新场景,将具有重要意义。
结论
基于CEEMDAN-CNN-LSTM的负荷预测研究,代表了当前电力负荷预测领域的前沿探索。它通过对负荷数据的多层次分解、特征提取和时序学习,有效地克服了传统方法和单一深度学习模型在处理复杂负荷数据时的局限性。该复合模型不仅能够显著提升负荷预测的精度和稳定性,为电网的优化调度、电力市场的健康发展以及能源管理提供强有力的技术支撑,同时也为未来智能电网的建设奠定了坚实基础。随着人工智能技术的不断发展,CEEMDAN-CNN-LSTM模型有望在负荷预测领域发挥更大的作用,为电力系统的绿色化、智能化转型贡献力量。未来的研究将持续关注模型的效率、可解释性及对复杂外部因素的融合能力,以期构建更加智能、鲁棒和普适的负荷预测系统。
⛳️ 运行结果
🔗 参考文献
[1] 肖白,高文瑞.基于CEEMDAN-LSTM的空间负荷预测方法[J].电力自动化设备, 2023, 43(3):7.DOI:10.16081/j.epae.202208016.
[2] 梁晓龙,李金刚,徐平平,等.基于CEEMDAN-CNN-LSTM的供热异常数据检测与清洗[J].电子测量技术, 2024, 47(11):20-27.
[3] 王昊.基于改进BI-LSTM与CEEMDAN组合模型的短期电力负荷预测研究[D].兰州理工大学,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇