✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在应对全球气候变化和实现能源可持续发展的宏大背景下,构建以可再生能源为主体的新型电力系统已成为全球共识。其中,风力发电以其清洁、可再生的特性,在未来电力结构中占据着举足轻重的地位。然而,风电固有的间歇性、波动性和不确定性,对传统电力系统的稳定性、可靠性和经济性带来了前所未有的挑战。在这一转型过程中,储能技术扮演着至关重要的角色,它犹如新型电力系统中的“稳定器”和“调节器”,能够有效弥补风电的先天不足,促进高比例风电的消纳。本文将围绕【火电机组、风能、储能】三者之间的协同关系,深入探讨高比例风电电力系统中储能的运行机制、配置策略及其对新型电力系统演进的深远影响。
一、风能的崛起与挑战:新型电力系统转型的核心驱动力
风能作为一种禀赋优越的清洁能源,其技术进步和成本下降极大地推动了其在全球范围内的规模化发展。高比例风电的接入,能够显著降低化石燃料消耗和碳排放,是实现“双碳”目标的关键路径。然而,风电的随机性和不可预测性,使得电力系统的平衡调节面临巨大压力。具体而言,高比例风电系统面临以下挑战:
- 功率平衡难题:
风速的波动直接导致风电出力的不稳定性,使得电力系统在短时、实时乃至日内平衡上面临巨大挑战。传统依靠预测和调度的平衡方式在高渗透率风电面前显得捉襟见肘,频繁的功率不平衡可能引发频率和电压的剧烈波动,甚至危及电网安全。
- 调峰能力需求增加:
风电出力“靠天吃饭”,在风力资源丰富的时段,大量风电接入导致系统富余容量,需要更强的向下调峰能力;而在风力资源匮乏的时段,则需要更大的向上调峰能力来弥补风电缺口,这使得传统电源,特别是火电机组,的调峰深度和频率都面临更高要求。
- 备用容量需求增加:
为了应对风电出力预测误差和突发故障,系统需要配置更多的旋转备用和非旋转备用,以保证系统在紧急情况下的稳定运行。这无疑增加了系统的运行成本。
- 电网阻塞问题:
风电场的选址往往受风资源分布限制,与负荷中心距离较远,大规模风电送出容易造成输电线路阻塞,限制风电的有效消纳。
二、火电机组的适应性演进:从基荷电源到灵活性支撑
传统电力系统以火电机组作为主要基荷电源,提供稳定的电力输出。然而,在高比例风电电力系统中,火电机组的角色正在发生深刻转变,其核心功能不再仅仅是提供电量,更重要的是提供灵活性支撑,以适应风电的波动性。
- 深度调峰改造:
为了配合风电的波动,火电机组需要具备更宽的调峰范围和更快的调峰速率。通过对锅炉、汽轮机、控制系统等进行技术改造,实现火电机组从基荷运行模式向深度调峰甚至停启运行模式的转变,以提升系统对风电波动的响应能力。
- 快速爬坡能力提升:
当风电出力快速下降时,火电机组需要快速增加出力以弥补缺口。因此,提升火电机组的爬坡速率至关重要,这要求其具备更灵活的燃烧和蒸汽参数调节能力。
- 启停频率增加:
为了在风电大发期间避免弃风,火电机组可能需要频繁停启,以腾出输电通道和平衡容量。这对其设备寿命和运行维护提出了更高要求。
- 辅助服务提供:
火电机组在高比例风电电力系统中,将更多地参与到调频、调压、备用等辅助服务市场中,通过提供这些服务获得收益,弥补其在深度调峰下效率降低带来的经济损失。
需要强调的是,尽管火电机组的灵活性改造取得了显著进展,但其本身仍具有一定的最小出力限制和调峰速率限制,且频繁的调峰和启停会增加燃料消耗和设备损耗,降低其经济性和运行效率。因此,仅依靠火电机组的灵活性提升难以完全解决高比例风电带来的所有问题,储能的引入变得愈发必要。
三、储能的赋能作用:新型电力系统的关键使能技术
储能技术作为一种能够实现电能“时空转移”的关键技术,为高比例风电电力系统提供了革命性的解决方案,有效弥补了风电的间歇性和波动性,并提升了系统的整体运行效率和可靠性。储能技术在新型电力系统中的核心作用体现在以下几个方面:
- 平抑风电波动:
储能系统能够对风电出力的短时波动进行削峰填谷,在风电大发时吸纳多余电能,在风电低谷时释放电能,从而平滑风电输出曲线,减少对电网的冲击。例如,电池储能系统可以毫秒级响应风电出力的变化,提供快速调频和调压服务。
- 增强调峰能力:
储能系统可以独立或与火电机组协同提供调峰服务。在风电低谷时,储能系统放电弥补出力缺口,有效降低火电机组的调峰深度和频率;在风电大发时,储能系统充电吸收过剩电量,减少弃风,缓解火电机组的向下调峰压力。
- 提供备用容量:
储能系统具备快速响应的特性,可以作为旋转备用和非旋转备用的有效补充,提升系统应对突发事件的能力,降低对传统电源备用容量的需求。
- 缓解电网阻塞:
将储能配置在风电场出口或输电线路关键节点,可以在电网阻塞时段吸收风电,在阻塞解除后释放电能,从而提升输电线路的利用率,促进风电的远距离输送和消纳。
- 提升电能质量:
储能系统可以实时监测电网电压和频率,通过充放电调节,抑制谐波、电压闪变等电能质量问题,提升电网运行的稳定性。
- 提供黑启动能力:
对于某些储能技术,如抽水蓄能和大型电池储能,在电网发生大面积停电时,可以作为黑启动电源,逐步恢复电网供电,提高系统的韧性。
四、储能运行及配置分析:基于火电机组与风能的协同考量
高比例风电电力系统中储能的运行策略和配置方案,必须充分考虑与火电机组、风电场的协同作用,以实现经济性、可靠性和环境效益的最大化。
1. 储能运行模式:
- 集中式储能:
储能系统集中布置在风电场出口、变电站或独立储能电站,由调度中心统一调度,主要承担系统级的调峰、调频和备用功能。
- 分布式储能:
储能系统分散布置在用户侧或配电网中,可就近消纳风电,提供局部电网支撑,并参与需求侧响应。
- 与风电场联合运行:
储能系统与风电场一体化建设,作为风电场的“平滑器”,提供风电功率预测修正、出力计划跟踪等服务。
- 与火电机组协同运行:
储能与火电机组形成“打捆”运行模式,储能承担快速响应和短时波动平抑,火电机组承担中长期和深度调峰任务,实现二者优势互补,优化调度。例如,在风电出力爬坡阶段,储能可快速提供向上调节,为火电机组预留爬坡时间;在风电出力下降阶段,储能可快速响应提供向下调节,减少火电机组出力波动。
2. 储能配置策略:
储能的配置容量和功率,需要通过严谨的仿真分析和优化计算来确定,主要考虑以下因素:
- 风电渗透率:
风电渗透率越高,对储能的需求越迫切,配置容量和功率通常越大。
- 系统负荷特性:
负荷峰谷差、波动性以及负荷与风电出力的匹配程度影响储能的调峰和调谷需求。
- 火电机组灵活性:
现有火电机组的调峰能力、启停特性等会影响储能的辅助作用强度。火电机组灵活性越差,对储能的依赖度越高。
- 储能技术经济性:
不同储能技术的成本、寿命、效率和充放电特性决定其适用场景。例如,抽水蓄能适合大规模、长周期储能;电化学储能(如锂离子电池)适合中短时、高功率、快速响应场景;飞轮储能适合短时、高功率、频繁充放电场景。
- 电力市场机制:
辅助服务市场、容量市场等设计,将影响储能的投资收益,从而指导储能的配置规模。
- 电网拓扑结构和输电能力:
输电通道阻塞点需要重点考虑配置储能,以缓解输电压力。
3. 优化配置方法:
- 多目标优化:
兼顾系统运行经济性、可靠性、环境效益等多个目标,采用遗传算法、粒子群算法等智能优化算法进行储能配置。
- 场景分析法:
考虑不同风速、负荷、设备故障等典型场景,评估储能在各种情况下的作用和效益。
- 随机优化法:
考虑风电预测误差和不确定性,采用随机规划或鲁棒优化方法,确定在不确定性下最优的储能配置。
- 全生命周期成本评估:
综合考虑储能设备的初始投资、运行维护成本、衰减成本以及提供的辅助服务收益,进行经济性评估。
五、未来展望与挑战
高比例风电电力系统储能的运行与配置是一个动态演进的复杂课题。随着技术的进步和电力市场改革的深入,其发展趋势将呈现以下特点:
- 多类型储能协同发展:
抽水蓄能、电化学储能、压缩空气储能、氢储能等不同类型储能技术将优势互补,共同服务于新型电力系统。例如,抽水蓄能提供大规模、长时储能,平抑季节性波动;电化学储能提供快速响应和短时功率支持。
- 源网荷储一体化:
储能将不再是独立的设备,而是深度融入源、网、荷各个环节,形成一体化系统,实现能源流、信息流和价值流的高度协同。
- 人工智能与大数据赋能:
借助人工智能和大数据技术,实现风电出力和负荷的精准预测,优化储能的运行调度策略,提升系统的智能化水平。
- 电力市场机制完善:
建立健全能够反映储能价值的市场机制,包括容量市场、辅助服务市场等,激发储能投资的积极性,促进储能的商业化发展。
- 储能安全标准提升:
随着储能规模的扩大,储能系统的安全性和可靠性将面临更高要求,需要建立完善的安全标准和管理体系。
尽管前景广阔,高比例风电电力系统储能的发展仍面临诸多挑战:
- 成本高昂:
尽管储能成本呈下降趋势,但其大规模应用仍需要进一步降低成本,以提升经济竞争力。
- 寿命与衰减:
储能设备的循环寿命和容量衰减是制约其经济性和可靠性的重要因素,需要持续技术攻关。
- 技术路线多样性:
不同储能技术各有利弊,选择和优化配置需要更深入的评估和论证。
- 标准和规范缺乏:
储能的并网标准、安全规范、运行管理体系等仍需进一步完善。
- 电力市场滞后:
现有电力市场机制未能充分体现储能的灵活性和辅助服务价值,需要改革创新。
结论
高比例风电电力系统的构建,是能源转型的必然趋势。在此进程中,火电机组的灵活性改造、风能的规模化利用以及储能的深度融合,共同构成了新型电力系统的三大支柱。储能作为“压舱石”和“润滑剂”,能够有效地平抑风电波动,增强系统调峰能力,提供多元辅助服务,是实现高比例风电安全、经济、高效消纳的关键。未来,随着储能技术的不断进步、成本的持续下降以及电力市场机制的日益完善,储能将在支撑新型电力系统向更清洁、更智能、更韧性方向发展中发挥越来越重要的作用,最终实现人与自然和谐共处的可持续能源未来。
⛳️ 运行结果
🔗 参考文献
[1] 柴沛垚.高比例风电电力系统储能运行及配置分析[J].电力设备管理, 2023(6):139-141.
[2] 王丹阳.飞轮储能系统在风力发电系统中的应用研究[D].华北电力大学(北京),2022.
[3] 罗晓乐,宋洋,徐翔,等.计及风电不确定性的综合能源系统储能优化配置研究[J].东北电力技术, 2021, 042(012):18-25,46.DOI:10.3969/j.issn.1004-7913.2021.12.005.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇