基于粒子群优化算法的微电网调度(光伏、储能、电动车、电网交互)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在全球能源转型和可持续发展的大背景下,以分布式电源(Distributed Generation, DG)为核心的微电网技术正受到越来越广泛的关注。微电网通常由光伏(Photovoltaic, PV)、风力发电等可再生能源,储能系统(Energy Storage System, ESS),以及各种负荷组成,并可选择性地与大电网连接或孤立运行[1]。相较于传统的大电网,微电网具有提高供电可靠性、降低输电损耗、提高能源利用效率以及促进分布式电源接入等诸多优势。然而,可再生能源的间歇性和波动性、负荷需求的不确定性以及多主体间的复杂交互,给微电网的优化调度带来了严峻挑战[2]。

在微电网中,光伏发电具有清洁无污染、可持续的特点,但其出力受天气条件影响显著,存在间歇性和随机性。储能系统作为连接发电侧和负荷侧的关键环节,能够有效地平抑可再生能源的波动,实现能量的削峰填谷,提高系统的灵活性和稳定性[3]。电动汽车(Electric Vehicles, EV)作为一种新兴的移动储能单元,其大规模接入对电网的负荷特性将产生重要影响。通过合理的充放电调度,电动汽车不仅可以作为负荷响应的主体,也可以作为移动的分布式电源参与电网的能量管理,实现车网互动(Vehicle-to-Grid, V2G)[4]。此外,微电网与大电网的交互,包括购电和售电,是实现微电网经济效益最大化的重要途径。如何在考虑各主体特性及其相互作用的基础上,制定一套行之有效的调度策略,是微电网能量管理领域的研究热点。

传统的微电网调度方法包括线性规划、非线性规划、动态规划等,但这些方法在处理大规模、高维度的复杂优化问题时,往往面临计算复杂度高、收敛速度慢以及易陷入局部最优等问题。近年来,随着人工智能和计算智能的快速发展,以粒子群优化(Particle Swarm Optimization, PSO)为代表的群智能算法因其寻优能力强、易于实现、收敛速度快等优点,在解决电力系统优化调度问题中得到了广泛应用[5]。

本文旨在研究基于粒子群优化算法的微电网多主体协同调度问题,旨在实现微电网运行成本的最小化。文章将对微电网中光伏、储能、电动汽车以及与大电网交互的数学模型进行建立,并构建以运行成本最小化为目标的优化调度模型。随后,详细介绍粒子群优化算法的原理,并将其应用于微电网调度问题的求解。最后,通过仿真分析验证所提方法的有效性,为微电网的经济运行和智能管理提供参考。

2. 微电网多主体模型

为了实现微电网的优化调度,首先需要对微电网中的主要组成部分进行准确的数学建模。

2.1 光伏发电模型

光伏发电的输出功率主要受太阳辐照度、环境温度以及光伏电池板自身特性的影响。由于太阳辐照度的随机性和波动性,光伏发电通常被视为一种不确定性电源。在短期调度中,可以利用历史数据和天气预报对光伏出力进行预测。本文中,光伏出力可表示为:

图片

PPV(t)=f(G(t),Tamb(t))

2.2 储能系统模型

储能系统是微电网中平衡能量供需的关键设备,其充放电行为直接影响系统的运行成本和稳定性。本文主要考虑电池储能系统。储能系统的状态可由荷电状态(State of Charge, SOC)来描述。储能系统的充放电功率及其荷电状态模型如下:

图片

SOC(t)=SOC(t−1)+ηc⋅Pch(t)⋅ΔtErated−Pdis(t)⋅Δtηd⋅Erated

2.3 电动汽车模型

电动汽车作为一种特殊的负荷和移动储能单元,其充放电行为对微电网的负荷特性和运行策略有着重要影响。在V2G模式下,电动汽车可以向电网放电,提供辅助服务。本文主要考虑电动汽车的有序充放电。电动汽车群的聚合模型可表示为:

图片

SOCEV(t)=SOCEV(t−1)+ηEV,ch⋅PEV,ch(t)⋅ΔtEEV,rated−PEV,dis(t)⋅ΔtηEV,dis⋅EEV,rated

2.4 与大电网交互模型

微电网与大电网之间的电能交互是实现微电网经济运行的重要组成部分。微电网可以向大电网购电以弥补内部发电不足,也可以向大电网售电以消纳多余电量,从而获得收益。与大电网的交互功率受线路传输容量限制,并需根据分时电价进行交易。

图片

Pgrid(t)=Pbuy(t)−Psell(t)

3. 微电网调度优化模型

微电网调度优化的目标是实现系统运行成本的最小化,同时满足各类运行约束。本文构建了以经济性为主要目标的调度模型。

3.1 目标函数

本文的调度目标是最小化调度周期内的总运行成本,包括从大电网购电成本、储能系统和电动汽车充放电损耗成本以及储能系统和电动汽车的运行维护成本。

图片

MinCtotal=∑t=1T(Cbuy(t)−Csell(t)+Closs(t)+COM(t))

图片

3.2 约束条件

图片

图片

图片

4. 粒子群优化算法

粒子群优化(PSO)算法是一种基于群体智能的随机搜索算法,由Kennedy和Eberhart于1995年提出,其灵感来源于鸟群觅食行为。PSO算法通过模拟群体中个体之间的信息共享,使整个群体在解空间中进行搜索,从而找到最优解。

4.1 算法原理

在PSO算法中,每个“粒子”代表解空间中的一个潜在解。每个粒子具有位置(Position)和速度(Velocity)两个属性。粒子在搜索过程中不断更新其位置和速度,并记录自身的历史最优位置(pBest)和整个群体在所有粒子中找到的最佳位置(gBest)。

图片

4.2 算法流程

将PSO算法应用于微电网调度问题的具体步骤如下:

图片

图片

4.3 约束处理

在PSO算法中处理约束条件通常有以下几种方法:

  1. 惩罚函数法

    :将违反约束的程度转化为惩罚项,并加到目标函数中。当粒子违反约束时,其适应度值会急剧增加,从而降低其被选中的概率。

  2. 可行解随机初始化

    :在初始化粒子时,只生成满足所有硬约束的初始解。

  3. 边界处理

    :在更新粒子位置后,将其位置限制在变量的上下界之间。例如,如果某个功率变量超出了其最大或最小限制,将其调整到边界值。

本文中将采用惩罚函数法结合边界处理来处理约束,以提高算法的鲁棒性。

5. 仿真算例与结果分析

为了验证所提出的基于PSO算法的微电网多主体协同调度方法的有效性,本文构建了一个典型的微电网系统进行仿真分析。

5.1 算例设置

微电网配置

  • 光伏容量:50 kW

  • 储能系统容量:200 kWh,额定功率:40 kW

  • 电动汽车群:假设有20辆电动汽车参与调度,平均每辆电动汽车电池容量为40 kWh,平均充放电功率为6 kW。电动汽车的接入和离开时间随机分布在调度周期内。

  • 负荷:采用典型日负荷曲线。

  • 调度周期:24小时,调度步长:1小时。

价格参数
采用分时电价策略,峰、平、谷时段的购电价格和售电价格参照实际情况设定。

  • 购电价格:峰时段(10:00-14:00, 18:00-22:00),0.8元/kWh;平时段(8:00-10:00, 14:00-18:00),0.5元/kWh;谷时段(0:00-8:00, 22:00-24:00),0.3元/kWh。

  • 售电价格:通常低于购电价格,例如购电价格的0.6倍。

PSO算法参数

图片

    5.2 仿真结果与分析

    通过运行PSO算法进行优化调度,可以得到各设备的出力曲线和购售电功率曲线。

    1. 微电网总运行成本
      经过PSO优化后,微电网的日运行成本显著降低。与未优化(例如仅根据负荷需求直接向大电网购电)的情况相比,优化后的运行成本降低了约20%-30%,这表明优化调度在经济性方面的显著优势。

    2. 各电源出力与负荷平衡
      图1展示了优化调度后的光伏出力、储能充放电功率、电动汽车充放电功率、大电网购售电功率以及总负荷曲线。

    • 光伏

      :在白天光照充足时段(约8:00-17:00),光伏发电出力达到峰值,优先满足本地负荷需求。

    • 储能系统

      :在谷电价时段(如凌晨0:00-8:00和晚上22:00-24:00),储能系统会进行充电,将低价电力储存起来。在峰电价时段,储能系统会放电以供电给负荷,减少高价购电,实现“削峰填谷”和“移峰填谷”的效果。

    • 电动汽车

      :电动汽车在夜间谷电价时段进行有序充电,满足用户出行需求。在某些时段,若电价合适且车辆SOC允许,部分电动汽车会参与放电(V2G),进一步平抑负荷或向电网售电。

    • 与大电网交互

      :在光伏出力不足、负荷较高且储能放电有限时,微电网会从大电网购电。而在光伏出力过剩或储能、电动汽车充放电存在富余时,微电网会向大电网售电,获取收益。

    结论
    仿真结果表明,基于PSO算法的微电网多主体协同调度方法能够有效地在考虑光伏、储能、电动汽车及大电网交互复杂特性的基础上,实现微电网运行成本的最小化。该方法具有较强的寻优能力和实用性,为微电网的智能管理和优化运行提供了有效的解决方案。

    6. 结论与展望

    本文对基于粒子群优化算法的微电网多主体协同调度问题进行了深入研究。首先,详细阐述了微电网中光伏、储能、电动汽车以及与大电网交互的数学模型。在此基础上,构建了以运行成本最小化为目标函数的微电网优化调度模型,并考虑了功率平衡、各设备运行限制以及电动汽车的用户需求等一系列约束条件。随后,详细介绍了粒子群优化算法的原理、流程以及在处理约束方面的策略,并将其应用于所建立的微电网调度模型求解。通过仿真算例验证了所提出方法的有效性,结果表明该方法能够显著降低微电网的运行成本,提高可再生能源的消纳能力,并实现电动汽车的有序充放电,从而提升微电网的整体经济性和运行可靠性。

    尽管本文所提出的调度策略取得了一定的研究成果,但微电网的优化调度仍然面临诸多挑战,未来研究可以从以下几个方面展开:

    1. 不确定性处理

      :光伏出力和负荷预测存在不确定性,考虑将随机优化、鲁棒优化或场景分析等方法引入调度模型,以提高调度方案的鲁棒性和适应性。

    2. 多目标优化

      :除了经济性,微电网调度还应考虑环境效益(如碳排放)、系统可靠性、电压稳定等多个目标。未来的研究可以采用多目标优化算法(如多目标PSO)来寻求帕累托最优解集。

    3. 需求侧响应

      :将需求侧响应(Demand Response, DR)机制纳入调度模型,通过激励用户改变用电模式,进一步优化负荷曲线,提高系统灵活性。

    4. 多微电网互联

      :研究多个微电网之间的协同调度和能量交易,形成区域综合能源系统,进一步提高能源利用效率和系统可靠性。

    5. 算法改进

      :针对PSO算法可能存在的早熟收敛、参数设置敏感等问题,可以研究改进的PSO算法(如自适应PSO、混合PSO等),以提升算法的寻优性能和收敛速度。

    6. 实时调度

      :本文侧重于日内调度,未来可研究适用于实时调度的快速优化算法,以应对系统运行中突发事件和短期预测误差。

    ⛳️ 运行结果

    图片

    图片

    图片

    🔗 参考文献

    [1] 辛文成,向铁元,詹昕,等.邻接矩阵和粒子群优化算法应用于微电网重构[J].电力系统及其自动化学报, 2014, 26(11):5.DOI:10.3969/j.issn.1003-8930.2014.11.008.

    [2] 邱鹏光.基于群智能算法对微电网经济调度的研究[D].华北电力大学,2013.

    [3] 赖纪东,谢天月,苏建徽,等.基于粒子群优化算法的孤岛微电网电压不平衡补偿协调控制[J].电力系统自动化, 2020, 44(16):9.DOI:10.7500/AEPS20200108004.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值