基于六维超混沌系统和DNA编码的图像加密算法附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着数字图像在信息交换中的广泛应用,图像信息的安全传输变得尤为重要。传统的加密算法在处理图像数据时面临数据量大、冗余性高、像素关联性强等挑战。本文提出了一种基于六维超混沌系统和DNA编码的图像加密算法。该算法首先利用六维超混沌系统生成高复杂度和随机性的混沌序列,用于图像的置乱操作,有效打乱图像像素的空间位置。其次,引入DNA编码技术,将图像像素值转化为DNA碱基序列,并结合混沌序列进行DNA运算,进一步增加加密强度。实验结果表明,该算法在加密效果、安全性以及抗攻击能力方面均表现出色,能够有效抵御统计攻击、差分攻击等,为图像信息的安全传输提供了新思路。

关键词: 图像加密;超混沌系统;DNA编码;信息安全;数字图像处理

1. 引言

在信息化时代,数字图像作为一种重要的信息载体,广泛应用于军事、医疗、通信、电子商务等领域。然而,数字图像在传输和存储过程中极易受到非法窃取、篡改和恶意攻击,这给图像信息的安全性带来了严峻挑战。因此,研究高效、安全的图像加密技术已成为当前信息安全领域的热点问题。

传统的加密算法,如数据加密标准(DES)和高级加密标准(AES),主要针对文本数据设计,其串行加密方式在处理图像这种高维度、高冗余的数据时效率较低,且难以有效消除图像固有的强相关性,导致加密图像仍然可能泄露部分信息。鉴于图像数据本身的特点,如数据量大、像素之间存在高度相关性、数据格式复杂等,开发专门针对图像的加密算法显得尤为必要。

混沌系统以其固有的伪随机性、对初始条件的敏感依赖性、遍历性和不可预测性等特性,在图像加密领域展现出巨大潜力。利用混沌序列进行图像像素的置乱和扩散,能够有效打乱图像的像素排列,消除像素之间的相关性,从而增强加密图像的安全性。然而,低维混沌系统由于其相空间较小,容易被预测和破解,其安全性有待提高。近年来,超混沌系统,即拥有两个或两个以上正Lyapunov指数的混沌系统,因其更高的复杂性和随机性,被认为是更适合图像加密的选择。

另一方面,生物DNA分子具有超高密度存储、巨大并行性计算以及自组织、自复制等特性,为信息加密提供了全新的视角。DNA编码技术通过将数字信息映射到DNA碱基序列,并利用DNA链的互补性、重组、突变等生物学操作实现信息的加密,具有极高的并行性和安全性。

本文旨在结合六维超混沌系统和DNA编码技术,提出一种新型图像加密算法。该算法旨在充分利用超混沌系统的复杂性和DNA编码的并行性,构建一个安全、高效的图像加密方案,以期为数字图像的安全传输提供更可靠的保障。

2. 相关工作

图像加密技术大致可分为基于传统密码学、基于混沌系统和基于DNA计算的加密方法。

2.1 基于传统密码学的图像加密

DES和AES等传统加密算法虽然成熟且安全,但直接应用于图像加密时,由于图像数据量庞大,加密速度慢。此外,图像的像素相关性高,即使经过加密,传统的块密码算法也可能保留一些统计特征,导致加密图像的安全性不足。因此,需要对传统算法进行改进或结合其他技术来适应图像加密的需求。

2.2 基于混沌系统的图像加密

混沌系统因其敏感的初值依赖性、遍历性和拓扑混合性等特性,被广泛应用于图像加密。早期的混沌图像加密算法主要采用一维或二维混沌映射,如Logistic映射、Henon映射等。这些算法通过混沌序列对图像像素进行置乱和扩散,有效打乱了像素位置并改变了像素值。然而,随着研究的深入,低维混沌系统的密钥空间有限、易受攻击等缺点逐渐暴露。为了提高安全性,研究者开始转向高维混沌系统,如三维Lorenz系统、四维超混沌系统等。高维混沌系统具有更复杂的动力学行为和更大的密钥空间,能有效抵抗暴力破解和相空间重构攻击。特别是超混沌系统,其多方向的混沌扩散特性使得其在图像加密中表现出更优越的性能。

2.3 基于DNA计算的图像加密

DNA计算是一种新兴的计算范式,利用DNA分子的生物特性进行信息处理。DNA编码技术在图像加密领域的应用,主要是将图像的像素值转换为DNA碱基序列(A、T、C、G),然后通过DNA运算(如加法、减法、异或、互补等)对DNA序列进行加密。DNA计算的并行性使得图像加密的效率得到显著提升,同时DNA的巨大存储密度和复杂的生物操作也为加密算法提供了更高的安全性。

3. 六维超混沌系统

本文选择一种六维超混沌系统作为混沌序列的生成器。六维超混沌系统通常具有两个或两个以上的正Lyapunov指数,表现出更加复杂和不可预测的动力学行为,从而生成更高质量的伪随机序列,为图像加密提供更强的安全性。

3.1 六维超混沌系统的数学模型

本研究采用的六维超混沌系统数学模型如下:

图片

dx1dt=σ(x2−x1)+x6

3.2 混沌序列的生成与预处理

图片

4. DNA编码与运算

DNA编码技术将图像的像素值转换为DNA碱基序列,并利用DNA链的互补性、重组、突变等生物学操作实现信息的加密。

4.1 DNA编码规则

数字图像的像素值通常介于0到255之间。为了将其编码为DNA序列,我们采用8位二进制表示每个像素值。每个DNA碱基(A、T、C、G)可以表示2位二进制信息。因此,一个8位的像素值可以由4个DNA碱基组成。

常用的DNA编码规则有多种,本文采用以下编码规则(部分示例,可根据需要调整):

  • 00 → A

  • 01 → C

  • 10 → G

  • 11 → T

例如,如果一个像素值为170(二进制为10101010),则其DNA编码为:
10 → G
10 → G
10 → G
10 → G
即GGGG。

为了增加加密的随机性,可以采用多组编码规则,并根据混沌序列动态选择编码规则。例如,可以预设8种或更多的DNA编码规则,然后根据混沌序列的某个值来选择当前像素的编码规则。

4.2 DNA运算规则

在DNA编码之后,需要对DNA序列进行运算,以实现扩散操作。本文主要利用DNA的加法、减法和异或运算。

  • DNA加法/减法:

     定义基于模4的运算规则。例如,A=0, C=1, G=2, T=3。
    A + C = 0 + 1 = 1 (C)
    T - G = 3 - 2 = 1 (C)

  • DNA异或(XOR)运算:

     同样基于二进制位的异或运算。
    A XOR C = 00 XOR 01 = 01 (C)
    G XOR T = 10 XOR 11 = 01 (C)

为了提高安全性,DNA运算规则也可以动态选择,即根据混沌序列的值来决定采用哪种运算以及运算的顺序。

5. 基于六维超混沌系统和DNA编码的图像加密算法

本算法将图像加密过程分为置乱和扩散两个主要阶段,并引入DNA编码和运算,增强了加密的复杂性和安全性。

5.1 加密流程
  1. 图像预处理:

    • 将待加密的彩色图像(RGB)分解为R、G、B三个分量矩阵,或将灰度图像直接作为输入。

    • 获取图像的高度HH和宽度WW。

  2. 混沌序列生成:

    图片

    • 图像置乱(Shuffling):

      • 置乱操作旨在打乱图像像素的空间位置,消除像素之间的强相关性。

      • 可以采用基于混沌序列的像素位置置乱方法。例如,使用S1S1和S2S2序列对图像像素的行和列进行置乱,或者通过构建置乱索引表来重新排列像素。

      • 一种常用的置乱方法是利用一个混沌序列对所有像素进行排序,然后根据排序结果重新排列像素。例如,将图像拉伸为一维序列,然后根据S1S1序列的排序结果对该一维序列进行重新排列。

      • 为了进一步增强置乱效果,可以进行多轮置乱,或者采用复合置乱方式(如行置乱和列置乱相结合)。

    • DNA编码:

      图片

      • DNA扩散(Diffusion)与混沌序列的融合:

        图片

        • DNA解码:

          • 将经过DNA运算后的DNA序列根据其逆编码规则解码回8位二进制数。

          • 将8位二进制数转换为0-255的十进制像素值。

        • 重构加密图像:

          • 将解码后的像素值重新组织成与原始图像相同尺寸的矩阵,生成加密图像。

        5.2 解密流程

        解密过程是加密过程的逆操作。

        图片

          5.3 密钥管理

          图片

          6. 结论

          本文提出了一种基于六维超混沌系统和DNA编码的图像加密算法。该算法充分利用了六维超混沌系统复杂的动力学特性和DNA编码并行运算的优势,通过混沌置乱和DNA扩散相结合的方式,显著增强了图像加密的安全性。实验结果表明,本算法在加密效果、密钥敏感性、统计特性、差分攻击抵抗能力和抗裁剪攻击能力方面均表现优异。加密后的图像具有良好的视觉混乱度和统计均匀性,能够有效抵御各种已知攻击。

          未来的研究方向可以包括:

          • 进一步优化算法,提高加密和解密效率。

          • 探索更复杂的DNA运算规则和动态编码策略。

          • 将该算法应用于视频流加密等实时性要求较高的场景。

          • 结合其他加密技术,如量子密码学,进一步提升算法的安全性。

          ⛳️ 运行结果

          图片

          图片

          图片

          图片

          图片

          🔗 参考文献

          [1] 张大庆,朱建良.六维三次超混沌系统及其在图像加密中的应用[J].宁波职业技术学院学报, 2013, 17(4):4.DOI:10.3969/j.issn.1671-2153.2013.04.018.

          [2] 武磊.基于六维超混沌和DNA编码的图像加密算法设计[J].现代信息科技, 2024, 8(3):149-153.

          [3] 解庆港.基于六维细胞神经网络的混沌系统设计及应用研究[D].西北师范大学,2024.

          📣 部分代码

          🎈 部分理论引用网络文献,若有侵权联系博主删除

           👇 关注我领取海量matlab电子书和数学建模资料 

          🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

          🌈 各类智能优化算法改进及应用
          生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
          🌈 机器学习和深度学习时序、回归、分类、聚类和降维

          2.1 bp时序、回归预测和分类

          2.2 ENS声神经网络时序、回归预测和分类

          2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

          2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

          2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
          2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

          2.7 ELMAN递归神经网络时序、回归\预测和分类

          2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

          2.9 RBF径向基神经网络时序、回归预测和分类

          2.10 DBN深度置信网络时序、回归预测和分类
          2.11 FNN模糊神经网络时序、回归预测
          2.12 RF随机森林时序、回归预测和分类
          2.13 BLS宽度学习时序、回归预测和分类
          2.14 PNN脉冲神经网络分类
          2.15 模糊小波神经网络预测和分类
          2.16 时序、回归预测和分类
          2.17 时序、回归预测预测和分类
          2.18 XGBOOST集成学习时序、回归预测预测和分类
          2.19 Transform各类组合时序、回归预测预测和分类
          方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
          🌈图像处理方面
          图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
          🌈 路径规划方面
          旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
          🌈 无人机应用方面
          无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
          🌈 通信方面
          传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
          🌈 信号处理方面
          信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
          🌈电力系统方面
          微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
          🌈 元胞自动机方面
          交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
          🌈 雷达方面
          卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
          🌈 车间调度
          零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

          👇

          评论
          添加红包

          请填写红包祝福语或标题

          红包个数最小为10个

          红包金额最低5元

          当前余额3.43前往充值 >
          需支付:10.00
          成就一亿技术人!
          领取后你会自动成为博主和红包主的粉丝 规则
          hope_wisdom
          发出的红包
          实付
          使用余额支付
          点击重新获取
          扫码支付
          钱包余额 0

          抵扣说明:

          1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
          2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

          余额充值