✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电力电子变换器在现代电力系统中扮演着至关重要的角色,然而其输出电压或电流中存在的谐波分量对电网质量和设备运行造成不利影响。选择性谐波消除(SHE)作为一种有效的谐波抑制策略,旨在通过优化开关角来精确消除特定次谐波。本文深入研究了基于牛顿-拉夫逊(Newton-Raphson)算法的SHE方法,探讨其在计算消除选定谐波的开关角方面的理论基础、算法流程、收敛特性以及实际应用中的挑战。通过对多电平逆变器中SHE-PWM(选择性谐波消除脉宽调制)技术的研究,本文旨在为电力电子变换器谐波抑制提供一种高效且精确的解决方案。
关键词: 选择性谐波消除;牛顿-拉夫逊算法;谐波抑制;多电平逆变器;开关角
1. 引言
随着电力电子技术的飞速发展,各种电力电子变换器,如整流器、逆变器、斩波器等,在工业、交通、新能源发电等领域得到了广泛应用。然而,由于电力电子器件的非线性开关特性,这些变换器在运行过程中会产生大量的谐波电流和谐波电压,注入到电网中。谐波的存在不仅会导致电网电压波形畸变、功率因数下降、损耗增加,还会引发设备过热、绝缘老化、继电保护误动作等一系列问题,严重威胁电力系统的稳定性和可靠性。因此,如何有效地抑制电力电子变换器产生的谐波,提高电能质量,一直是电力电子领域的研究热点和挑战。
目前,电力电子变换器的谐波抑制方法主要包括无源滤波、有源滤波以及各种脉宽调制(PWM)技术。其中,PWM技术因其控制灵活、易于实现、成本相对较低等优点,成为主流的谐波抑制手段。传统的PWM技术,如SPWM(正弦脉宽调制)、SVPWM(空间矢量脉宽调制)等,虽然能够有效降低低次谐波,但其频谱中仍存在较高的开关频率谐波以及其他高次谐波。为了进一步提高谐波抑制效果,选择性谐波消除(SHE)技术应运而生。
SHE技术的核心思想是通过优化开关角,精确消除输出电压或电流中选定的特定次谐波。与传统PWM技术不同,SHE-PWM不追求完全的正弦波形,而是针对性地消除对系统危害最大的低次谐波。这种方法在实现所需基波分量的同时,通过求解一组非线性方程组来确定最佳的开关角。由于其卓越的谐波消除能力,SHE-PWM在逆变器、特别是多电平逆变器中得到了广泛应用,例如在光伏并网、风力发电、高压直流输电(HVDC)等领域。
在求解SHE的非线性方程组时,各种数值方法被提出和应用,其中牛顿-拉夫逊算法以其快速收敛和高精度而备受关注。本文将重点探讨牛顿-拉夫逊算法在SHE中的应用,深入分析其理论原理、实现步骤、收敛特性以及在实际应用中可能面临的挑战和优化策略。
2. 选择性谐波消除(SHE)的原理
SHE技术的核心在于通过控制电力电子变换器开关器件的通断时间,使输出波形中的特定次谐波分量为零。以一个单相全桥逆变器为例,其输出电压的傅里叶级数展开式可以表示为:
Vout(t)=∑n=1∞(ancos(nωt)+bnsin(nωt))
3. 牛顿-拉夫逊算法在SHE中的应用
牛顿-拉夫逊算法(Newton-Raphson Method)是一种经典的求解非线性方程组的迭代方法。它基于泰勒级数展开,通过不断线性逼近来逼近方程组的根。
3.1 算法原理
3.2 算法流程
牛顿-拉夫逊算法在SHE中的具体实现步骤如下:
3.3 收敛特性与挑战
牛顿-拉夫逊算法具有二次收敛速度,这意味着如果初始值足够接近真实解,算法可以非常快速地收敛。然而,其收敛性也存在以下挑战:
- 初始值敏感性:
牛顿-拉夫逊算法对初始值的选择非常敏感。如果初始值远离真实解,算法可能不收敛,或者收敛到错误的局部最优解。这对于SHE问题尤为突出,因为非线性方程组往往存在多个解。
- 奇异雅可比矩阵:
在某些情况下,雅可比矩阵可能在迭代过程中变得奇异或接近奇异,导致无法求解线性方程组,或者求解结果不稳定。这通常发生在某些开关角组合使得导数接近零时。
- 计算复杂度:
每次迭代都需要计算雅可比矩阵并求逆(或求解线性方程组),当开关角数量M较大时,计算量会显著增加。
- 多解性:
SHE的非线性方程组通常存在多个解,牛顿-拉夫逊算法只能找到其中一个解,而不能保证找到所有解或全局最优解。在实际应用中,可能需要结合其他优化算法(如遗传算法、粒子群算法等)来寻找更优的解决方案。
4. 多电平逆变器中的SHE-PWM应用
多电平逆变器因其输出电压波形接近正弦、谐波含量低、开关频率低、THD(总谐波畸变率)小等优点,在高压大功率应用中越来越受到青睐。将SHE-PWM应用于多电平逆变器,可以进一步提升其谐波抑制能力。
多电平逆变器中的SHE-PWM设计,通常需要在满足基波幅值要求的同时,消除最低次的、对系统危害最大的谐波(如三次、五次、七次等)。由于多电平逆变器开关状态的复杂性,其SHE方程组的非线性程度更高,对牛顿-拉夫逊算法的收敛性和鲁棒性提出了更高的要求。
为了提高算法的鲁棒性,可以采取以下策略:
- 改进初始值选择:
结合启发式算法或离线预计算生成一个初始开关角库,根据期望的调制比和消除的谐波次数,选择最合适的初始值。
- 修正牛顿法:
采用阻尼牛顿法(Damped Newton Method)或信赖域法(Trust-Region Method),在迭代过程中限制步长,提高算法的全局收敛性。
- 正则化技术:
当雅可比矩阵接近奇异时,可以引入正则化项来改善其条件数,避免数值不稳定。
- 结合优化算法:
将牛顿-拉夫逊算法作为全局优化算法(如遗传算法、粒子群算法)的局部搜索工具,先通过全局优化算法找到一个较好的初始区域,再用牛顿-拉夫逊算法进行精确求解。
5. 结论
牛顿-拉夫逊算法作为一种强大的数值方法,为选择性谐波消除(SHE)中非线性方程组的求解提供了有效的途径。其二次收敛特性使得在初始值选取得当的情况下,能够快速、精确地计算出消除特定谐波所需的开关角。本文深入探讨了牛顿-拉夫逊算法在SHE中的理论原理、算法流程、收敛特性以及面临的挑战。
尽管牛顿-拉夫逊算法在SHE中具有显著优势,但其对初始值的敏感性、雅可比矩阵可能出现的奇异性以及多解性等问题,仍需要在实际应用中加以解决。特别是在多电平逆变器等复杂系统中,需要结合改进的初始值选择策略、修正牛顿法或与其他优化算法相结合,以提高算法的鲁棒性和找到全局最优解的能力。
随着电力电子技术对高电能质量要求的不断提升,SHE-PWM技术,特别是结合高效数值算法的SHE-PWM,将继续在电力电子变换器谐波抑制领域发挥关键作用。未来的研究可以进一步关注:
-
开发更加智能和鲁棒的初始值选择方法。
-
研究将牛顿-拉夫逊算法与其他优化算法的有效融合,以解决多解性和收敛性问题。
-
探索实时SHE-PWM实现技术,以适应动态变化的负载和电网条件。
-
将SHE-PWM应用于更复杂的拓扑结构,如模块化多电平变换器(MMC)等。
⛳️ 运行结果
🔗 参考文献
[1] 卓芳,高仕斌.优化牛顿-拉夫逊算法雅可比矩阵的正交预处理方法研究[J].电力系统保护与控制, 2010(3):5.DOI:10.3969/j.issn.1674-3415.2010.03.005.
[2] 罗杰.基于MATLAB的牛顿拉夫逊法电力潮流计算与实现[J].科技广场, 2010, 000(003):183-184.
[3] 指导老师:李咸善,学生:陈彦翔学号:.基于牛顿—拉夫逊算法的电力系统潮流计算[J].[2025-06-03].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇