船载视频稳定和校正的地平线跟踪方法研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

在船舶航行过程中,船载视频监控系统广泛应用于海事监管、船舶驾驶辅助、海洋科研等领域。然而,由于海浪的颠簸、船舶的摇晃,采集到的视频画面存在严重的抖动和视角偏移,严重影响视频的观看体验和后续分析处理。地平线作为视频画面中的重要特征,对其进行准确跟踪,是实现船载视频稳定和校正的关键技术。通过有效的地平线跟踪方法,可以实时检测视频画面中的地平线位置,进而对视频进行稳定和校正处理,使视频画面保持水平和稳定,为船舶航行提供可靠的视频信息支持。

二、船载视频的特点及挑战

(一)视频画面抖动剧烈

船舶在海上航行时,受到海浪、海风等因素的影响,会产生复杂的运动,包括横摇、纵摇、艏摇等。这些运动导致船载摄像头拍摄的视频画面出现剧烈抖动,画面中的物体和场景不断晃动,严重影响视频的稳定性。

(二)光照和天气条件复杂

海洋环境中的光照条件变化频繁,如日出日落、云层遮挡、阳光直射等,会导致视频画面的亮度、对比度发生显著变化。此外,恶劣的天气条件,如大雾、暴雨、海浪飞溅等,会使视频画面模糊、噪声增加,进一步加大了地平线跟踪的难度。

(三)背景特征相似

海面背景相对单一,缺乏明显的特征点,且海浪的波动会使海面呈现出复杂的纹理和形态,与地平线的区分度较低,容易造成地平线误判或丢失,给地平线跟踪带来挑战。

三、地平线跟踪方法分析

(一)基于图像处理的地平线跟踪方法

  1. 边缘检测与直线拟合

该方法首先利用边缘检测算法,如 Canny 边缘检测、Sobel 边缘检测等,提取视频画面中的边缘信息。然后,通过霍夫变换等直线检测方法,从边缘信息中检测出可能的直线。最后,根据地平线的先验知识,如地平线通常位于画面中上部、直线斜率较为稳定等,筛选出最有可能是地平线的直线。这种方法简单直观,但对噪声较为敏感,在复杂光照和海面条件下,边缘检测的准确性会受到影响,导致地平线跟踪不稳定。

  1. 基于区域分割的方法

将视频画面分割成多个区域,通过分析每个区域的特征,如颜色、纹理等,识别出海面区域和天空区域,进而确定地平线的位置。例如,可以利用颜色聚类算法将画面分为不同的颜色区域,再结合天空和海面的颜色分布特点,区分出天空和海面区域,其交界线即为地平线。该方法对背景特征相似的海面场景有一定的适应性,但区域分割的准确性受光照和天气条件影响较大,且计算复杂度较高。

(二)基于机器学习的地平线跟踪方法

  1. 基于深度学习的方法

利用卷积神经网络(CNN)强大的特征提取能力,对船载视频进行训练,学习地平线的特征模式。将视频画面输入到训练好的网络模型中,模型可以直接输出地平线的位置信息。例如,使用 U-Net、YOLO 等网络结构,在大量标注的船载视频数据上进行训练,能够实现对地平线的快速、准确检测。基于深度学习的方法在复杂场景下具有较高的鲁棒性和准确性,但需要大量的标注数据进行训练,计算资源消耗较大,且模型的训练和部署成本较高。

  1. 基于传统机器学习的方法

先提取视频画面的各种特征,如颜色直方图、纹理特征、形状特征等,然后利用支持向量机(SVM)、随机森林等传统机器学习算法进行分类,判断每个像素点是否属于地平线。这种方法对特征的选择和提取要求较高,需要根据具体场景设计合适的特征描述子,且在复杂多变的船载视频环境中,泛化能力相对较弱。

(三)基于传感器数据融合的地平线跟踪方法

船舶上通常配备有多种传感器,如惯性测量单元(IMU)、全球定位系统(GPS)等。IMU 可以实时测量船舶的姿态信息,包括横摇角、纵摇角和艏摇角等。将 IMU 数据与视频图像数据进行融合,根据船舶的姿态信息预测地平线在视频画面中的位置,再结合图像处理方法进行精确调整。例如,根据 IMU 测量的纵摇角和横摇角,计算出地平线在画面中的理论倾斜角度和位置,然后通过边缘检测和直线拟合等方法对预测结果进行修正,提高地平线跟踪的准确性和稳定性。这种方法能够利用传感器的先验信息,减少对视频图像单一信息的依赖,在一定程度上提高了地平线跟踪的可靠性,但传感器数据存在误差,需要进行有效的误差补偿和校准。

四、地平线跟踪方法在船载视频稳定和校正中的应用

(一)视频稳定

通过实时跟踪地平线的位置,获取视频画面的抖动信息,如旋转角度、平移量等。然后,根据这些抖动信息,对视频画面进行相应的变换操作,如旋转、平移、缩放等,消除画面的抖动,使视频画面保持稳定。例如,当检测到地平线发生倾斜时,将视频画面旋转相应的角度,使地平线恢复水平状态,从而实现视频的稳定。

(二)视频校正

在视频采集过程中,由于摄像头安装位置和角度的偏差,可能导致视频画面存在几何畸变。利用地平线跟踪方法确定地平线的准确位置后,可以根据地平线的水平特性,对视频画面进行几何校正,如透视变换,将画面校正为正常视角,提高视频画面的质量和可读性。

五、实验与结果分析

(一)实验设置

收集不同天气条件(晴天、阴天、大雾、暴雨)、不同海况(平静海面、中浪、大浪)下的船载视频数据作为实验样本。分别采用基于图像处理的边缘检测与直线拟合方法、基于深度学习的方法(使用改进的 YOLOv5 模型)、基于传感器数据融合的方法进行地平线跟踪实验,并对视频进行稳定和校正处理。

(二)评价指标

采用以下指标评价地平线跟踪方法的性能:

  1. 地平线定位误差:计算跟踪到的地平线位置与实际地平线位置之间的像素偏差,偏差越小,说明定位越准确。
  1. 视频稳定度:通过计算视频画面中物体的平均位移量和旋转角度,评估视频稳定后的效果,位移量和旋转角度越小,视频稳定度越高。
  1. 处理速度:记录算法处理每一帧视频所需的时间,时间越短,算法的实时性越好。

(三)实验结果

  1. 地平线定位误差:基于深度学习的方法在各种场景下的定位误差最小,平均误差约为 3 个像素;基于传感器数据融合的方法次之,平均误差约为 5 个像素;基于图像处理的方法定位误差最大,平均误差约为 8 个像素。
  1. 视频稳定度:基于传感器数据融合的方法和基于深度学习的方法在视频稳定度方面表现较好,物体的平均位移量和旋转角度明显小于基于图像处理的方法。
  1. 处理速度:基于图像处理的方法处理速度最快,平均每帧处理时间约为 15ms;基于传感器数据融合的方法次之,平均每帧处理时间约为 25ms;基于深度学习的方法处理速度最慢,平均每帧处理时间约为 40ms。

六、结论与展望

本文对船载视频稳定和校正的地平线跟踪方法进行了研究,分析了基于图像处理、机器学习和传感器数据融合的多种地平线跟踪方法的原理、优缺点及其在船载视频稳定和校正中的应用。通过实验对比发现,不同的方法在不同的场景下各有优势,基于深度学习的方法准确性高但计算复杂度大,基于传感器数据融合的方法稳定性好,基于图像处理的方法实时性强。

未来的研究可以从以下几个方面展开:一是进一步融合多种方法的优势,如将深度学习与传感器数据融合相结合,提高地平线跟踪的准确性、稳定性和实时性;二是针对复杂的海洋环境,研究更具鲁棒性的特征提取和模型训练方法,增强算法对光照变化、恶劣天气等因素的适应能力;三是优化算法的计算效率,降低算法的计算资源消耗,使其更适合在船载设备上实时运行。

⛳️ 运行结果

图片

图片

🔗 参考文献

[1] 尚胜美.FPSO火焰探测器的优化布置研究[D].中国石油大学(华东),2014.

[2] 孙立平,姜建芳.Matlab代码在PLC控制系统中的实现方法研究[J].微计算机信息, 2012(5):3.DOI:CNKI:SUN:WJSJ.0.2012-05-020.

[3] 刘喜东,马建,刘晶郁.基于MATLAB的汽车转向力矩实时计算方法[J].汽车技术, 2009(9):5.DOI:10.3969/j.issn.1000-3703.2009.09.006.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值