✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
共享单车作为一种便捷、环保的出行方式,在全球范围内得到了迅速发展。准确预测共享单车租赁需求对于优化车辆调度、提高运营效率、降低运营成本具有重要意义。传统的预测方法往往难以捕捉复杂的时间序列特征和多源异构数据之间的关联性。本文提出了一种基于双向门控循环单元(BiGRU)和注意力机制(Attention)的共享单车租赁预测模型。该模型能够有效地学习租赁数据中的长期依赖关系,并通过注意力机制为不同时间步的输入赋予不同的权重,从而更精确地捕捉关键特征。实验结果表明,与传统的机器学习模型和单一的深度学习模型相比,所提出的BiGRU-Attention模型在多种评价指标上均表现出更优的预测性能,为共享单车运营管理提供了新的思路和技术支持。
1. 引言
随着城市化进程的加速和人们对绿色出行方式的日益关注,共享单车已成为城市交通系统的重要组成部分。通过智能手机应用,用户可以方便地租用和归还单车,解决了“最后一公里”出行难题。然而,共享单车运营面临着潮汐效应、供需不平衡等挑战。例如,在高峰时段,某些区域可能出现车辆短缺,而在低谷时段,其他区域可能出现车辆堆积。这些问题不仅影响用户体验,也增加了企业的运营成本。因此,准确预测共享单车租赁需求,实现精细化运营,是当前共享单车行业面临的关键问题。
传统的租赁预测方法包括时间序列分析(如ARIMA、SARIMA)、回归分析(如线性回归、支持向量回归)以及一些机器学习方法(如随机森林、梯度提升树)。这些方法在处理线性或简单非线性关系时表现较好,但对于具有复杂非线性特征、长期依赖性和多源异构数据的共享单车租赁预测问题,其性能往往受限。近年来,深度学习在处理序列数据方面展现出强大的能力。循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),已被广泛应用于时间序列预测任务。然而,标准的RNN和其变体在处理长序列时可能面临梯度消失或梯度爆炸问题,且单向的RNN只能捕捉历史信息,无法利用未来信息。
为了解决上述问题,本文提出了一种基于BiGRU-Attention的共享单车租赁预测模型。该模型结合了BiGRU处理长期依赖和双向信息流的优势,以及注意力机制在特征选择和权重分配上的能力。具体而言,BiGRU能够同时考虑过去和未来的上下文信息,从而更全面地理解时间序列数据。注意力机制则允许模型在预测时动态地关注输入序列中最重要的部分,有效提升了模型的预测精度和鲁棒性。
2. 相关工作
共享单车租赁预测是一个活跃的研究领域,已有大量的研究成果。
2.1 传统预测方法
早期的研究主要采用统计学和机器学习方法。例如,一些研究利用历史租赁数据、天气信息和节假日等因素,通过多元回归模型预测需求。另一些研究则采用ARIMA模型分析租赁数据的时序特征。支持向量机(SVM)和随机森林(RF)等机器学习模型也被应用于共享单车需求预测,并取得了一定的效果。然而,这些方法在处理大规模、高维度、非线性数据时存在局限性,难以充分挖掘数据中蕴含的复杂模式。
2.2 深度学习预测方法
近年来,随着深度学习技术的快速发展,越来越多的研究开始将其应用于共享单车租赁预测。
- 循环神经网络(RNN)及其变体:
RNN在处理序列数据方面具有天然优势。LSTM和GRU作为RNN的改进,通过引入门控机制有效地缓解了梯度消失问题,被广泛应用于交通流量预测、需求预测等领域。例如,有研究利用LSTM模型预测不同区域的共享单车借还量。
- 卷积神经网络(CNN):
CNN在图像处理领域取得了巨大成功,近年来也被引入到时间序列预测中。一些研究将时间序列数据转化为图像形式,利用CNN提取空间特征。
- 注意力机制:
注意力机制最初应用于自然语言处理领域,用于帮助模型在处理长序列时关注最重要的部分。随后,注意力机制被引入到其他深度学习任务中,包括时间序列预测。通过为不同时间步的输入赋予不同的权重,注意力机制能够增强模型对关键信息的捕捉能力。
尽管深度学习模型在共享单车租赁预测方面取得了显著进展,但仍存在一些挑战。例如,单一的RNN或其变体可能无法充分捕捉数据中的双向依赖关系;在处理长序列时,模型可能仍然会遗忘早期信息。这些问题促使研究者探索更先进的模型结构。
3. 模型构建
本文提出的BiGRU-Attention模型结构如图1所示。该模型主要由输入层、BiGRU层、注意力层和输出层组成。
3.1 输入层
输入层接收处理后的共享单车租赁相关数据。这些数据可以包括:
- 历史租赁量:
前N个时间步的租赁数量。
- 时间特征:
星期几、小时、月份、节假日等。
- 天气特征:
温度、湿度、风速、天气状况(晴、雨、雪)等。
- 地理特征:
站点ID、区域类型等(如果数据粒度是站点或区域)。
所有输入特征首先进行归一化处理,以消除不同特征之间的量纲差异,加速模型收敛。
3.2 BiGRU层
BiGRU(Bidirectional Gated Recurrent Unit)是GRU网络的双向扩展。GRU作为LSTM的简化版本,通过更新门和重置门来控制信息的流动,有效地解决了传统RNN的梯度消失问题。BiGRU由两个独立的GRU层组成,一个正向GRU和一个反向GRU。
- 正向GRU:
按照时间序列的正向顺序处理输入数据,捕获历史信息。
- 反向GRU:
按照时间序列的反向顺序处理输入数据,捕获未来信息。
两个方向的隐藏状态在每个时间步进行拼接,形成最终的隐藏状态表示。这种双向结构使得模型能够同时考虑过去和未来的上下文信息,从而更全面地理解时间序列数据,捕捉更复杂的依赖关系。
BiGRU的计算过程如下:
3.3 注意力层
4. 结论
本文针对共享单车租赁预测问题,提出了一种基于BiGRU-Attention的深度学习模型。该模型充分利用了BiGRU在捕捉双向长期依赖方面的优势,并通过注意力机制动态地学习不同时间步输入特征的重要性。在真实共享单车数据集上的实验结果表明,与传统的统计学模型、机器学习模型以及单一的深度学习模型相比,所提出的BiGRU-Attention模型在RMSE、MAE和MAPE等多个评价指标上均表现出更优的预测性能。这验证了BiGRU-Attention模型在共享单车租赁预测中的有效性和优越性。
本研究为共享单车运营管理提供了新的技术支持,有助于运营方更准确地预测租赁需求,优化车辆调度策略,提高车辆利用率,减少空驶率,从而降低运营成本,提升用户满意度。
5. 未来工作
尽管本文提出的BiGRU-Attention模型取得了良好的预测效果,但仍有以下方面值得进一步探索:
- 多模态数据融合:
考虑融合更多异构数据源,例如城市POI(兴趣点)数据、人口密度数据、交通事件数据等,以更全面地刻画共享单车租赁的影响因素。
- 模型可解释性:
深度学习模型往往被认为是“黑箱”模型,缺乏可解释性。未来的工作可以尝试引入可解释性方法,分析模型预测的依据,例如注意力权重在不同时间步上的分布,从而更好地理解影响租赁需求的关键因素。
- 实时预测能力:
实际运营中,需要模型具备实时预测能力。可以探索轻量级模型或模型剪枝技术,以满足实时部署的需求。
- 迁移学习:
不同的城市或区域可能具有不同的租赁模式。未来可以研究如何利用迁移学习,将在一个城市训练好的模型迁移到另一个城市,以减少新城市的数据采集和模型训练成本。
- 时空预测:
本文主要关注时间序列预测。未来可以进一步研究时空预测模型,同时预测不同区域在不同时间点的租赁需求,从而实现更精细化的区域调度。
⛳️ 运行结果
🔗 参考文献
[1] 孟英豪,王启阳,王柯人,等.基于Markov过程天气预测的共享单车调度优化研究[J].温州大学学报(自然科学版), 2024, 45(3):30-41.DOI:10.20108/j.wzun.202309010.
[2] 孙丹辉,王波.基于地理信息数据的共享单车使用特征研究[J].软件导刊, 2019, 18(2):5.DOI:CNKI:SUN:RJDK.0.2019-02-034.
[3] 王艺筱.综合城市计算和时空注意力残差网络的共享单车需求预测[D].大连交通大学,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇