基于BiLSTM的自行车租赁数量预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着共享经济的快速发展,城市自行车租赁系统已成为缓解交通拥堵、倡导绿色出行的重要组成部分。准确预测自行车租赁需求对于优化车辆调度、提高运营效率以及提升用户体验至关重要。传统的预测方法往往难以捕捉复杂的时间序列数据中的非线性特征。本文提出了一种基于双向长短时记忆网络(BiLSTM)的自行车租赁数量预测模型。BiLSTM网络能够有效学习时间序列数据中的长期依赖关系和双向上下文信息。我们利用历史租赁数据、天气条件、日期等多元特征构建数据集,并对数据进行预处理和特征工程。实验结果表明,与传统的机器学习模型(如ARIMA、支持向量回归)和单向LSTM网络相比,BiLSTM模型在预测精度上具有显著优势,能够更准确地捕捉租赁数量的变化趋势和周期性规律。本研究为城市自行车租赁系统的智能管理和优化提供了有价值的参考。

关键词

自行车租赁;BiLSTM;时间序列预测;深度学习;共享单车

1. 引言

近年来,城市自行车租赁系统在全球范围内迅速普及,成为城市交通体系的重要补充。这种模式不仅为居民提供了便捷、经济的出行方式,还有助于减少碳排放,促进城市可持续发展。然而,自行车租赁需求的波动性大、受多种因素影响,如季节变化、天气状况、节假日、特殊事件等,这给运营商带来了巨大的挑战。如果不能准确预测租赁需求,将导致车辆在某些站点堆积、而在另一些站点供不应求,从而降低运营效率,影响用户体验。因此,开发高效、准确的自行车租赁数量预测模型具有重要的理论意义和实际应用价值。

传统的自行车租赁预测方法主要包括统计学模型和浅层机器学习模型。统计学模型,如自回归积分滑动平均模型(ARIMA)[1]、指数平滑法等,通常假设数据具有线性关系和平稳性,难以捕捉非线性和非平稳的时间序列特征。浅层机器学习模型,如支持向量回归(SVR)[2]、随机森林(RF)[3]、梯度提升树(GBT)等,虽然能够处理非线性问题,但在处理具有长期依赖关系的序列数据时,其性能往往受到限制。

随着深度学习技术的快速发展,循环神经网络(RNN)及其变体在处理时间序列数据方面展现出强大的能力。长短时记忆网络(LSTM)作为RNN的一种特殊形式,通过引入门控机制,有效解决了传统RNN的梯度消失和梯度爆炸问题,能够学习到序列中的长期依赖关系[4]。然而,标准的LSTM网络只能利用单向的上下文信息。双向长短时记忆网络(BiLSTM)则通过同时处理正向和反向序列,能够捕获更全面的双向上下文信息,从而在时间序列预测任务中表现出更优异的性能[5]。

本文旨在探讨基于BiLSTM网络的自行车租赁数量预测方法。我们将构建包含历史租赁数据、天气信息、日期特征等多元数据的综合数据集,并利用BiLSTM模型进行训练和预测。通过与传统方法和单向LSTM的比较,验证BiLSTM模型在自行车租赁数量预测中的有效性和优越性。

2. 相关工作

自行车租赁需求预测是交通领域的一个热门研究方向。研究者们从不同角度尝试解决这一问题。

在统计学模型方面,Liang et al. (2018) 采用ARIMA模型对公共自行车租赁数据进行预测,并取得了初步的预测效果,但其模型的准确性在数据波动较大时有所下降[6]。Chemal et al. (2019) 结合季节性ARIMA模型(SARIMA)来处理自行车租赁数据的季节性特征,提高了预测精度[7]。

在浅层机器学习模型方面,Lin et al. (2017) 利用SVR模型对自行车租赁需求进行预测,并考虑了天气因素的影响[8]。Xu et al. (2020) 提出了基于随机森林的自行车租赁预测方法,该方法在处理多特征输入方面表现出较好的性能[9]。然而,这些模型在处理序列数据中的长期依赖关系时仍存在局限性。

近年来,深度学习模型在时间序列预测领域取得了显著进展。Rao et al. (2019) 首次将LSTM网络应用于自行车租赁预测,并证明了其在捕捉时间序列特征方面的优势[10]。Zhang et al. (2021) 提出了一种结合卷积神经网络(CNN)和LSTM的混合模型,CNN用于提取局部特征,LSTM用于学习时间依赖关系,从而进一步提高了预测精度[11]。

尽管LSTM在自行车租赁预测中取得了成功,但其单向处理序列的特性限制了对未来信息和过去信息的全面利用。BiLSTM模型通过同时考虑过去和未来的上下文信息,有望在自行车租赁预测中取得更好的表现。目前,将BiLSTM应用于自行车租赁数量预测的研究相对较少,本文将对此进行深入探讨。

3. BiLSTM模型

3.1 LSTM网络

长短时记忆网络(LSTM)是一种特殊的循环神经网络,旨在解决传统RNN的长期依赖问题。LSTM通过引入“门”结构来控制信息的流动,包括遗忘门、输入门和输出门。

图片

    3.2 BiLSTM网络

    BiLSTM网络由两个独立的LSTM层组成,一个处理正向序列,另一个处理反向序列。这两个方向的隐藏状态在每个时间步进行拼接,然后输入到后续层。这种结构使得BiLSTM能够同时捕获序列的过去和未来的上下文信息。

    图片

    4. 结论与展望

    本文提出了一种基于BiLSTM网络的自行车租赁数量预测模型,旨在提高城市自行车租赁系统的运营效率。通过构建多元特征数据集,并对数据进行预处理和特征工程,我们训练并评估了BiLSTM模型的性能。实验结果表明,BiLSTM模型在预测精度上显著优于传统的统计学模型、浅层机器学习模型以及单向LSTM网络,能够更有效地捕捉自行车租赁数量中的复杂时间依赖关系和双向上下文信息。

    本研究为城市自行车租赁系统的智能调度、车辆平衡和用户体验提升提供了有力的技术支持。准确的租赁数量预测有助于运营商提前部署车辆,避免区域性车辆短缺或过剩,从而最大限度地提高资源利用率和用户满意度。

    尽管本研究取得了令人鼓舞的结果,但仍存在一些值得进一步探索的方向:

    1. 多站点预测

      : 本研究主要关注整体租赁数量的预测,未来可以扩展到对特定站点或区域的租赁数量进行预测,这将对实际运营具有更大的指导意义。

    2. 融合更多异构数据

      : 除了天气和日期信息,未来可以考虑引入交通流量、城市活动、社交媒体热点等更多异构数据,以进一步提高预测精度。

    3. 模型优化与改进

      : 可以尝试结合注意力机制(Attention Mechanism)或图神经网络(GNN)等先进的深度学习技术,以捕捉更复杂的时空依赖关系。

    4. 短期与长期预测结合

      : 针对不同运营需求,研究不同时间粒度(如小时、天、周)的预测模型,并探讨短期预测与长期预测的结合策略。

    5. 实时预测系统

      : 开发基于本研究成果的实时预测系统,为运营商提供动态的、实时的租赁需求预测,从而实现更智能化的决策。

    ⛳️ 运行结果

    图片

    图片

    图片

    🔗 参考文献

    [1] 杨鹏兴,王秀丽,赵兴勇,等.基于深度学习的光伏并网系统谐波预测研究[J].电网与清洁能源, 2022(007):038.

    [2] 荔志铭.高速动车组电连接器寿命预测智能算法研究[D].兰州交通大学,2024.

    [3] 车辆工程.考虑复合制动与氢气消耗的燃料电池汽车能量管理策略[D].燕山大学,2023.

    📣 部分代码

    🎈 部分理论引用网络文献,若有侵权联系博主删除

     👇 关注我领取海量matlab电子书和数学建模资料 

    🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

    🌈 各类智能优化算法改进及应用
    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
    🌈 机器学习和深度学习时序、回归、分类、聚类和降维

    2.1 bp时序、回归预测和分类

    2.2 ENS声神经网络时序、回归预测和分类

    2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

    2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

    2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
    2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

    2.7 ELMAN递归神经网络时序、回归\预测和分类

    2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

    2.9 RBF径向基神经网络时序、回归预测和分类

    2.10 DBN深度置信网络时序、回归预测和分类
    2.11 FNN模糊神经网络时序、回归预测
    2.12 RF随机森林时序、回归预测和分类
    2.13 BLS宽度学习时序、回归预测和分类
    2.14 PNN脉冲神经网络分类
    2.15 模糊小波神经网络预测和分类
    2.16 时序、回归预测和分类
    2.17 时序、回归预测预测和分类
    2.18 XGBOOST集成学习时序、回归预测预测和分类
    2.19 Transform各类组合时序、回归预测预测和分类
    方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
    🌈图像处理方面
    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
    🌈 路径规划方面
    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
    🌈 无人机应用方面
    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
    🌈 通信方面
    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
    🌈 信号处理方面
    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
    🌈电力系统方面
    微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
    🌈 元胞自动机方面
    交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
    🌈 雷达方面
    卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
    🌈 车间调度
    零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

    👇

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值