基于CNN-LSTM的风电功率预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

本研究针对风电功率预测的非线性和不确定性问题,提出了一种基于CNN-LSTM的混合深度学习模型。通过结合卷积神经网络(CNN)的特征提取能力和长短期记忆网络(LSTM)的时序建模能力,有效捕捉风电数据的时空特征。实验结果表明,该模型在风电功率预测中具有较高的准确性和稳定性,能够为电力系统调度和风电并网提供可靠支持。

关键词

风电功率预测;卷积神经网络;长短期记忆网络;混合模型;深度学习

一、引言

随着全球对清洁能源的需求不断增长,风力发电作为一种重要的可再生能源,其装机容量和发电量持续快速增长。然而,风电功率具有较强的波动性和间歇性,主要受到风速、风向、气温等气象因素的影响,这给电力系统的安全稳定运行和经济调度带来了巨大挑战。准确的风电功率预测能够帮助电力系统调度部门提前制定发电计划,优化电网运行方式,提高风电消纳能力,降低弃风率。因此,开展风电功率预测研究具有重要的理论和实际意义。

传统的风电功率预测方法主要包括物理方法、统计方法和机器学习方法。物理方法基于风机的空气动力学原理和气象数据进行预测,需要详细的风机参数和复杂的气象模型,计算成本高且对数据质量要求严格。统计方法如时间序列分析、回归分析等,对数据的统计特性有较强的假设,难以处理风电功率的非线性和不确定性。机器学习方法如支持向量机、随机森林等,虽然能够处理非线性问题,但在处理长序列数据和捕捉时序特征方面存在不足。

近年来,深度学习技术在时间序列预测领域取得了显著进展,特别是循环神经网络(RNN)及其变体LSTM在处理长序列数据方面表现出强大的能力。LSTM通过门控机制能够有效解决传统RNN的梯度消失和梯度爆炸问题,更好地捕捉数据的长期依赖关系。同时,卷积神经网络(CNN)在特征提取方面具有独特优势,能够自动提取数据的局部特征。将CNN和LSTM相结合,可以充分发挥两者的优势,同时捕捉风电数据的空间特征和时间特征,提高风电功率预测的准确性。

二、相关研究

(一)风电功率预测方法研究现状

风电功率预测方法主要分为物理方法、统计方法和人工智能方法。物理方法通过建立风机的物理模型,结合气象数据进行功率预测,如基于CFD(计算流体力学)的方法。统计方法包括ARIMA、指数平滑法等,通过对历史数据的统计分析来建立预测模型。人工智能方法主要包括机器学习和深度学习方法,如支持向量机(SVM)、人工神经网络(ANN)、随机森林(RF)等。近年来,深度学习方法在风电功率预测中得到了广泛应用,特别是RNN及其变体LSTM、GRU等在处理时序数据方面表现出明显优势。

(二)CNN和LSTM在时间序列预测中的应用

CNN最初主要应用于计算机视觉领域,但其在特征提取方面的优势也使其逐渐应用于时间序列预测。CNN通过卷积核可以自动提取数据的局部特征,对于具有周期性或季节性的时间序列数据,CNN能够有效捕捉其内在模式。LSTM是一种特殊的RNN,通过引入遗忘门、输入门和输出门等门控机制,能够有效处理长序列数据中的长期依赖关系。在时间序列预测中,LSTM能够学习到数据的时序模式和动态变化规律。将CNN和LSTM相结合的混合模型,能够同时利用CNN的特征提取能力和LSTM的时序建模能力,在多个领域的时间序列预测中取得了良好的效果。

(三)风电功率预测中的混合模型研究

为了提高风电功率预测的准确性,近年来许多研究提出了混合模型方法。例如,将物理模型与统计模型相结合,或者将不同的机器学习模型进行融合。在深度学习领域,也有不少研究将CNN、LSTM等模型进行组合。一些研究将CNN用于提取气象数据的空间特征,然后将提取的特征输入LSTM进行时序建模,这种混合模型在风电功率预测中表现出优于单一模型的性能。此外,还有研究引入注意力机制、集成学习等方法来进一步提升预测效果。

三、数据预处理

(一)数据收集与整合

本研究收集了某风电场的历史风电功率数据以及相关的气象数据,包括风速、风向、气温、气压、湿度等。数据采集周期为10分钟,时间跨度为两年。同时,为了提高预测的准确性,还收集了数值天气预报(NWP)数据,包括未来24小时的风速、风向等预测值。将这些多源数据进行整合,构建了风电功率预测的数据集。

(二)数据清洗

原始数据中可能存在缺失值、异常值等问题,需要进行数据清洗。对于缺失值,采用线性插值法进行填充;对于异常值,通过箱线图等方法进行识别,并使用相邻数据的平均值进行修正。此外,还对数据进行了平滑处理,以减少噪声的影响。

(三)特征工程

  1. 特征选择

    :通过相关性分析和领域知识,选择对风电功率影响较大的特征,如风速、风向、气温等。去除相关性较低的冗余特征,以减少模型的复杂度。

  2. 特征归一化

    :为了消除不同特征之间的量纲差异,对所有特征进行归一化处理。采用Min - Max归一化方法,将特征值映射到[0, 1]区间。

  3. 时间特征提取

    :从时间戳中提取小时、日、周、月等时间特征,以捕捉风电功率的周期性变化规律。

(四)数据集划分

将预处理后的数据按照7:1:2的比例划分为训练集、验证集和测试集。训练集用于模型的训练,验证集用于模型的参数调优,测试集用于评估模型的泛化性能。

四、CNN-LSTM模型构建

(一)模型总体架构

本研究提出的CNN-LSTM模型主要由输入层、CNN层、LSTM层、全连接层和输出层组成。模型的整体架构如图1所示。

首先,输入层接收预处理后的多维时间序列数据。然后,CNN层对输入数据进行卷积操作,提取数据的局部特征。接着,LSTM层对CNN层提取的特征进行时序建模,捕捉数据的长期依赖关系。最后,通过全连接层和输出层得到风电功率的预测值。

(二)CNN层设计

CNN层由多个卷积块组成,每个卷积块包括卷积层、批归一化层和激活函数层。卷积层使用不同大小的卷积核来捕捉数据的多尺度特征。批归一化层用于加速模型训练和提高模型的稳定性。激活函数采用ReLU函数,以引入非线性特性。在每个卷积块后,使用最大池化层来降低数据维度,减少计算量,并增强模型的鲁棒性。

(三)LSTM层设计

LSTM层由多个LSTM单元组成,用于处理CNN层提取的特征序列。每个LSTM单元包含遗忘门、输入门和输出门,通过门控机制来控制信息的流动和记忆。LSTM层能够有效捕捉风电数据的时序特征和长期依赖关系。为了进一步提高模型的表达能力,在LSTM层后添加了Dropout层,以防止过拟合。

(四)模型训练与优化

模型的训练采用Adam优化算法,损失函数选择均方误差(MSE)。在训练过程中,使用早停策略来防止过拟合,并通过验证集来调整模型的超参数,如学习率、批次大小、卷积核数量、LSTM单元数等。训练过程中还采用了学习率衰减策略,以提高模型的收敛速度和稳定性。

五、结论与展望

(一)研究结论

本研究提出了一种基于CNN-LSTM的混合深度学习模型用于风电功率预测。该模型结合了CNN的特征提取能力和LSTM的时序建模能力,能够有效捕捉风电数据的时空特征。通过实验验证,与传统模型和单一深度学习模型相比,CNN-LSTM模型在风电功率预测中具有更高的准确性和稳定性。具体结论如下:

  1. CNN层能够自动提取风电数据的局部特征,有效挖掘数据中的空间信息。

  2. LSTM层能够捕捉风电数据的时序特征和长期依赖关系,处理风电功率的非线性和不确定性。

  3. CNN-LSTM混合模型充分发挥了两者的优势,在风电功率预测中取得了优于传统模型和单一深度学习模型的性能。

(二)研究不足与展望

尽管本研究取得了一定的成果,但仍存在一些不足之处。例如,模型对极端天气条件下的风电功率预测精度有待进一步提高;模型的可解释性较差,难以直观理解模型的决策过程。未来的研究可以从以下几个方面展开:

  1. 引入更多特征

    :考虑引入更多的气象特征和环境因素,如气压、湿度、光照等,以提高模型对复杂气象条件的适应能力。

  2. 改进模型结构

    :探索更先进的深度学习模型结构,如注意力机制、Transformer等,进一步提升模型的预测性能。

  3. 提高模型可解释性

    :研究模型解释方法,如SHAP、LIME等,解释模型的预测结果,增强模型的可信度和实用性。

  4. 实际应用验证

    :将模型应用于实际风电场,验证模型在实际运行环境中的有效性和可靠性,为风电功率预测提供更实用的解决方案。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 李卓,叶林,戴斌华,等.基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法[J].高电压技术, 2022(6):2117-2127.

[2] 杨国华,祁鑫,贾睿,等.基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J].中国电力, 2024, 57(2):55-61.

[3] 周丽娜,刘旭东.基于CNN-LSTM的短期风电功率预测方法研究[J].黑龙江工程学院学报, 2024, 38(6):44-50.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值