基于GRU的共享单车租赁预测研究(数据可换)附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着城市化进程的加速和环保理念的普及,共享单车作为一种便捷、绿色的出行方式,在全球范围内得到了飞速发展。然而,共享单车系统的运营效率受到诸多因素的影响,其中租赁需求的准确预测是提升运营效率、优化资源配置的关键。本文旨在探讨基于门控循环单元(GRU)神经网络的共享单车租赁预测方法。GRU作为一种特殊的循环神经网络(RNN),在处理序列数据方面具有显著优势,能够有效捕捉时间序列数据中的长期依赖关系。本研究将详细阐述数据预处理、模型构建、训练与评估等环节,并通过实验验证基于GRU模型的共享单车租赁预测方法的有效性和优越性,为共享单车运营方提供科学的决策支持。

1. 引言

共享单车以其“随借随还、方便快捷”的特点,极大地便利了市民出行,并有助于缓解城市交通拥堵和减少碳排放。然而,共享单车的需求呈现出显著的时空动态性,受天气、节假日、交通状况、周边设施等多种因素的综合影响。租赁需求预测的不准确,可能导致车辆调度不及时、热点区域车辆供给不足、冷点区域车辆积压等问题,从而降低用户体验,增加运营成本。因此,开发高效、准确的共享单车租赁预测模型,对于提升共享单车系统的智能化管理水平,实现精细化运营具有重要意义。

传统的预测方法,如时间序列分析模型(ARIMA、SARIMA等)和机器学习模型(支持向量机、随机森林等),在处理复杂的非线性时序数据方面存在一定的局限性。近年来,深度学习技术在处理大规模、高维度数据方面展现出强大能力,尤其在语音识别、自然语言处理等序列建模任务中取得了突破性进展。循环神经网络(RNN)及其变体,如长短期记忆网络(LSTM)和门控循环单元(GRU),能够有效学习序列数据中的时间依赖关系,为共享单车租赁预测提供了新的思路。

本研究将聚焦于基于GRU的共享单车租赁预测模型。GRU是LSTM的一种简化版本,在保持预测性能的同时,减少了模型参数,降低了训练复杂度。我们将详细探讨如何利用历史租赁数据、天气数据、日期信息等多元数据构建GRU预测模型,并对其性能进行评估和分析。

2. 相关工作

共享单车租赁预测已成为学术界和工业界关注的热点问题。现有研究主要集中在以下几个方面:

2.1 传统预测方法
早期研究多采用传统统计学方法,如历史平均法、移动平均法、指数平滑法等。这些方法简单易行,但在处理复杂非线性关系和外部影响因素时表现欠佳。随着机器学习技术的发展,一些研究开始应用支持向量回归(SVR)、随机森林(RF)、梯度提升树(GBDT)等模型进行共享单车需求预测。这些方法能够更好地捕捉数据中的非线性关系,但对于时间序列中的长期依赖性建模能力有限。

2.2 深度学习方法
近年来,深度学习在时序预测领域展现出强大潜力。RNN及其变体被广泛应用于交通流量预测、电力负荷预测等领域。在共享单车租赁预测方面,一些研究尝试使用标准的RNN模型。然而,标准RNN存在梯度消失或梯度爆炸问题,难以学习长期依赖关系。

为解决RNN的缺陷,LSTM和GRU应运而生。LSTM通过引入门控机制(输入门、遗忘门、输出门)有效控制信息流动,缓解了梯度消失问题。GRU是LSTM的简化版,通过更新门和重置门实现类似功能,但参数量更少,计算效率更高。已有研究表明,LSTM和GRU在处理时间序列预测问题上具有显著优势,能够更准确地捕捉共享单车租赁数据的复杂时序特征。例如,有研究将LSTM应用于共享单车需求预测,并取得了优于传统机器学习模型的效果。另有研究对比了LSTM和GRU在共享单车系统中的表现,发现两者均能有效提升预测精度。

2.3 融合模型与多源数据
为了进一步提升预测精度,一些研究开始探索融合模型,将深度学习与传统方法或机器学习方法相结合。例如,结合卷积神经网络(CNN)提取空间特征,再与RNN或GRU结合进行时序预测。此外,多源数据的融合也成为研究趋势,除了历史租赁数据,天气数据(温度、湿度、风速、降雨量等)、日历信息(工作日、周末、节假日)、POI(兴趣点)数据、交通状况等都被纳入预测模型,以提供更全面的信息。

本研究将着重探讨GRU模型在共享单车租赁预测中的应用,并充分考虑外部影响因素,以期构建一个鲁棒且高效的预测模型。

3. 基于GRU的共享单车租赁预测模型

本节将详细介绍基于GRU的共享单车租赁预测模型的构建过程,包括数据收集与预处理、模型架构设计、模型训练与评估。

3.1 数据收集与预处理

共享单车租赁数据通常包含租赁时间、还车时间、起始站点、结束站点等信息。为了更准确地预测租赁需求,还需要收集以下辅助数据:

  • 气象数据:

     包括温度、湿度、风速、降雨量、天气状况等。这些数据通常可以从气象局或开放API获取。

  • 日期时间特征:

     包括小时、星期几、月份、是否为工作日、是否为节假日等。这些特征对于捕捉租赁需求的周期性变化至关重要。

  • 地理位置信息:

     站点的经纬度信息,用于后续潜在的空间特征提取。

数据预处理是模型构建的关键环节,主要包括以下步骤:

  • 数据清洗:

     识别并处理缺失值、异常值。例如,对于租赁时间过短或过长的异常记录可以进行剔除。

  • 特征工程:
    • 时间序列构建:

       将原始的租赁记录聚合为特定时间粒度(例如,每小时或每天)的租赁量。例如,统计每个站点每小时的租赁数量。

    • 时序特征提取:

       从日期时间信息中提取小时、星期几、月份、是否工作日/节假日等离散特征。

    • 气象特征整合:

       将气象数据与租赁数据按照时间戳进行匹配。

  • 数据归一化:

     由于不同特征的取值范围差异较大,为了避免某些特征对模型训练产生过大的影响,需要对数据进行归一化处理(例如,Min-Max归一化或Z-score归一化),将数据缩放到0到1之间或均值为0、方差为1的范围。

  • 数据集划分:

     将预处理后的数据集划分为训练集、验证集和测试集。通常按照时间顺序进行划分,例如,前80%的数据作为训练集,接下来的10%作为验证集,最后10%作为测试集。

3.2 GRU模型架构

门控循环单元(GRU)是RNN的一种变体,其核心在于引入了“门”机制来控制信息在序列中的流动,有效解决了传统RNN的梯度消失问题。GRU包含两个门:

  • 更新门(Update Gate):

     决定当前输入和上一时刻的隐藏状态有多少信息可以被带到当前隐藏状态中。

  • 重置门(Reset Gate):

     决定上一时刻的隐藏状态有多少信息被遗忘。

图片

图片

基于GRU的共享单车租赁预测模型架构可以设计为:

  • 输入层:

     接收预处理后的特征数据,包括历史租赁量、小时、星期几、是否工作日、气象数据等。

  • GRU层:

     一个或多个GRU层堆叠,用于学习序列数据中的时间依赖关系。可以根据数据复杂度和模型性能调整GRU层的数量和隐藏单元的数量。

  • 全连接层(Dense Layer):

     GRU层的输出连接到全连接层,用于将GRU学习到的高级特征映射到最终的预测值(即下一时刻的租赁量)。

  • 输出层:

     单个神经元,输出预测的租赁量。

3.3 模型训练与评估

  • 损失函数:

     对于回归预测任务,常用的损失函数包括均方误差(Mean Squared Error, MSE)、平均绝对误差(Mean Absolute Error, MAE)或均方根误差(Root Mean Squared Error, RMSE)。本研究可选用MSE作为损失函数,因为它对大误差的惩罚更大,有助于模型更好地拟合数据。

  • 优化器:

     优化器用于调整模型参数以最小化损失函数。常用的优化器包括Adam、RMSprop等。Adam优化器通常在实践中表现良好,可以作为首选。

  • 训练过程:
    • 批次大小(Batch Size):

       每次迭代训练时送入模型的样本数量。

    • 学习率(Learning Rate):

       控制模型参数更新的步长。

    • 训练轮次(Epochs):

       整个训练数据集被模型遍历的次数。

    • 早停(Early Stopping):

       为了防止过拟合,可以设置早停机制。当验证集上的性能在一定数量的epoch内没有提升时,停止训练。

图片

4. 结论与展望

本研究深入探讨了基于GRU神经网络的共享单车租赁预测方法。通过对数据收集、预处理、模型构建、训练与评估的详细阐述,验证了GRU模型在共享单车租赁预测任务中的有效性和优越性。实验结果表明,GRU模型能够有效捕捉共享单车租赁需求的复杂时序特征和外部影响因素,为共享单车运营方提供准确的租赁量预测,从而有助于优化车辆调度、提升用户体验、降低运营成本。

尽管本研究取得了一定的进展,但仍存在可进一步探索的方向:

  • 多任务学习:

     除了预测租赁量,还可以同时预测还车量、车辆流向等,构建多任务学习模型,以更好地理解共享单车系统的动态。

  • 融合异构数据:

     进一步整合POI数据、城市路网数据、公交地铁客流数据等,以更全面地刻画共享单车租赁需求的驱动因素。

  • 注意力机制:

     引入注意力机制,使模型能够更关注重要的历史时间步或特征,进一步提升预测精度和模型可解释性。

  • 空间-时间预测:

     现有研究多关注时间序列预测,未来可以探索结合图神经网络(GNN)等方法,实现站点间的空间依赖性建模,进行更精细化的时空协同预测。

  • 实时预测与预警:

     探索将模型部署到实时系统中,实现对未来短时租赁量的实时预测,并结合阈值设置进行异常预警,辅助实时调度决策。

  • 可解释性研究:

     虽然深度学习模型在预测性能上表现出色,但其“黑箱”特性限制了在实际应用中的推广。未来可以探索可解释性AI技术,理解模型做出预测的依据,提升模型的可信度。

⛳️ 运行结果

图片

图片

🔗 参考文献

[1] 张徐茜露.早高峰共享单车OD需求预测与停车点智能优化研究[D].江西财经大学,2024.

[2] 应用统计.基于改进GRU模型的共享单车需求量预测研究[D]. 2023.

[3] 王超然,朱亮,李文婧,等.基于WTD-CEEMDAN-Bi-LSTM-GRU的共享单车需求预测[J].兰州工业学院学报, 2023, 30(3):36-42.DOI:10.3969/j.issn.1009-2269.2023.03.008.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值