基于LSSVM的自行车租赁数量预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着共享经济的兴起和城市交通理念的转变,公共自行车租赁系统在全球范围内得到了快速发展。有效预测自行车租赁数量对于优化资源配置、提升运营效率和满足用户需求具有重要意义。本研究旨在探讨基于最小二乘支持向量机(LSSVM)的自行车租赁数量预测模型,以期克服传统预测方法在处理非线性、高维度数据时存在的局限性。研究首先对自行车租赁系统的特性及影响因素进行了分析,然后详细阐述了LSSVM的基本原理、核函数选择以及参数优化方法。通过引入历史租赁数据、天气状况、节假日信息等多元特征,构建了LSSVM预测模型。实验结果表明,LSSVM模型在自行车租赁数量预测方面具有较高的准确性和鲁棒性,其预测性能优于传统的统计学方法和部分机器学习方法。本研究为城市公共自行车系统的智能化管理和可持续发展提供了理论依据和实践指导。

关键词: 最小二乘支持向量机;自行车租赁;数量预测;机器学习;智能交通

1. 引言

在全球范围内,城市化进程的加速和环境污染问题的日益突出,使得可持续交通成为城市发展的重要议题。公共自行车租赁系统作为一种绿色、便捷的出行方式,在缓解城市交通拥堵、减少碳排放、促进居民健康等方面发挥着越来越重要的作用。然而,自行车租赁数量的波动性大,受多种复杂因素影响,如季节变化、天气条件、节假日、特殊事件以及时间因素等。准确预测自行车租赁数量,对于公共自行车运营企业和政府部门具有战略性意义。它不仅有助于合理调度自行车和停车桩资源,避免供需失衡,提高用户满意度,还能为城市规划者提供数据支持,从而优化自行车道建设、站点布局和系统维护策略。

传统的自行车租赁预测方法主要包括时间序列分析(如ARIMA模型)、回归分析和简单的统计学方法。这些方法在处理线性、低维数据时表现尚可,但面对自行车租赁数据所固有的非线性、高维度、非平稳性等特征时,其预测精度往往难以满足实际需求。近年来,随着人工智能和机器学习技术的快速发展,越来越多的研究开始将机器学习模型应用于复杂的预测问题,例如神经网络、支持向量机(SVM)、随机森林等。

最小二乘支持向量机(LSSVM)作为SVM的一种改进形式,以其独特的优势引起了研究者的广泛关注。LSSVM将标准SVM中的二次规划问题转化为求解一组线性方程组,从而显著降低了计算复杂性,提高了训练速度。同时,LSSVM保留了SVM处理非线性、小样本、高维数据以及良好的泛化能力等优点,使其在回归预测领域展现出强大的潜力。

本研究旨在探索LSSVM在自行车租赁数量预测中的应用,通过构建一个多变量LSSVM预测模型,以期提供一个更准确、更鲁棒的预测工具。研究将详细介绍LSSVM的理论基础,探讨如何选择合适的核函数和优化模型参数,并利用实际的自行车租赁数据进行模型验证和性能评估。

2. 自行车租赁系统特性与影响因素分析

公共自行车租赁系统的运作模式相对成熟,但其租赁需求具有显著的复杂性。理解这些特性和影响因素是构建有效预测模型的基础。

2.1 自行车租赁数据特性
  • 非线性:

     自行车租赁数量与各种影响因素之间往往存在复杂的非线性关系。例如,温度上升初期可能促进租赁,但过高的温度可能反而抑制租赁。

  • 非平稳性:

     租赁数量在不同时间尺度上表现出非平稳性,如日内高峰低谷、周内工作日与周末的差异、以及季节性波动。

  • 多变量依赖性:

     租赁数量并非由单一因素决定,而是受多种因素综合影响。

  • 高维度:

     考虑到可能的影响因素(时间、天气、节假日等),数据特征空间可能较高。

  • 随机性与噪声:

     实际租赁数据中不可避免地包含随机噪声,这需要模型具备一定的抗干扰能力。

2.2 主要影响因素

影响自行车租赁数量的因素可以归纳为以下几类:

  • 时间因素:
    • 日期类型:

       工作日与周末/节假日的租赁模式差异巨大。通常,工作日通勤需求旺盛,而周末则以休闲娱乐为主。

    • 小时:

       一天中的不同时段,租赁数量呈现规律性的峰谷。例如,早晚高峰时段租赁量显著增加。

    • 季节:

       春夏两季通常是租赁旺季,而秋冬两季因天气原因租赁量可能下降。

  • 气象因素:
    • 温度:

       适宜的温度区间(如15-25摄氏度)通常会促进租赁,过高或过低的温度都会抑制租赁。

    • 湿度:

       湿度过高可能使人感到不适,影响骑行意愿。

    • 风速:

       较大的风速会增加骑行难度,降低租赁意愿。

    • 降雨量/天气状况:

       雨雪天气是租赁的显著抑制因素。晴天、多云天气通常租赁量较高。

  • 节假日与特殊事件:
    • 国家法定节假日、地方性节日、重大活动(如演唱会、体育赛事)等都会对租赁数量产生显著影响,可能导致租赁量激增或锐减。

  • 社会经济因素(间接):
    • 人口密度、城市交通拥堵状况、公共交通便利性、自行车基础设施完善程度等虽然不易直接作为预测模型的输入,但它们是系统长期运行的基础环境,并影响着人们的出行选择。

在构建预测模型时,应充分考虑上述因素,并将其量化为模型输入特征。

3. 最小二乘支持向量机(LSSVM)原理

3.1 支持向量机(SVM)回顾

支持向量机(SVM)是一种基于统计学习理论的机器学习方法,最初主要用于解决二分类问题,后来被扩展到回归预测(SVR)和多分类问题。SVM的核心思想是找到一个最优超平面,使得数据点到该超平面的距离最大化,从而实现数据的最佳分离或回归拟合。对于非线性问题,SVM通过核函数将原始特征空间的数据映射到更高维的特征空间,使得在高维空间中可以进行线性分离或回归。

标准SVR的优化问题通常涉及求解一个二次规划(Quadratic Programming, QP)问题,这在处理大规模数据集时可能会面临较高的计算复杂度。

3.2 LSSVM基本原理

最小二乘支持向量机(LSSVM)是由Suykens和Vandewalle于1999年提出的一种改进的SVM。LSSVM将标准SVM中的不等式约束和松弛变量替换为等式约束,并将求解二次规划问题转化为求解一组线性方程组。这一改变显著简化了计算过程,提高了模型的训练速度,尤其适用于大规模数据集。

图片

图片

图片

3.3 核函数选择

图片

3.4 参数优化

LSSVM模型主要有两个重要的参数需要优化:正则化参数γγ和核函数参数(对于RBF核函数是σσ)。

  • 正则化参数γγ:

     决定了对训练误差的惩罚程度。γγ值越大,对训练误差的惩罚越重,模型可能越容易过拟合;γγ值越小,模型可能欠拟合。

  • 核参数σσ:

     决定了数据在高维空间中的分布密度。σσ值越大,数据映射到高维空间后越平滑,可能导致欠拟合;σσ值越小,数据在高维空间中分布越分散,可能导致过拟合。

常用的参数优化方法包括:

  • 网格搜索(Grid Search):

     在预定义的参数范围内,以步长遍历所有参数组合,选择使模型性能最优的组合。

  • 交叉验证(Cross-validation):

     结合网格搜索使用,将数据集划分为训练集和验证集,通过多次验证来评估模型在不同参数组合下的性能,提高参数选择的可靠性。

  • 启发式优化算法:

     如遗传算法(GA)、粒子群优化(PSO)等,可以在更大参数空间内寻找最优解,但计算成本较高。

本研究将采用网格搜索结合交叉验证的方法来寻找最优的γγ和σσ参数。

4. 数据收集与预处理

4.1 数据来源

本研究将使用某城市公共自行车租赁系统的历史租赁数据作为数据集。该数据集通常包含以下信息:

  • 时间戳:

     精确到小时或分钟的租赁发生时间。

  • 租赁站点ID/名称:

     标识租赁发生的地点。

  • 还车站点ID/名称:

     标识还车发生的地点。

  • 租赁数量:

     特定时间段内(例如每小时)的总租赁次数。

除了租赁数据,还需要收集与租赁量相关的外部数据,主要包括:

  • 气象数据:

     包括温度、体感温度、湿度、风速、降雨量、天气状况(晴、多云、阴、雨、雪等)。这些数据可以从气象局或公开的气象API获取。

  • 节假日信息:

     包括法定节假日、周末以及特殊的公共活动日。

4.2 数据预处理

原始数据通常存在缺失值、异常值和不一致性,需要进行严格的预处理以保证模型训练的质量。

  • 数据清洗:
    • 缺失值处理:

       对于少量缺失值,可以采用插值法(如线性插值、邻近点插值)或均值/中位数填充。对于大量缺失值,可能需要考虑删除相关特征或样本。

    • 异常值检测与处理:

       识别并处理明显偏离正常范围的租赁数量。可以使用统计学方法(如3σσ准则)或可视化方法(如箱线图)进行检测。异常值可以被替换为均值、中位数或进行截断。

  • 特征工程:
    • 时间特征提取:

       从时间戳中提取有用的特征,如年份、月份、日期、星期几、小时、是否为工作日、是否为节假日等。

    • 分类特征编码:

       对于天气状况(如晴、多云、雨)等分类变量,需要进行数值化编码,如独热编码(One-Hot Encoding)。

    • 连续特征归一化/标准化:

       将不同量纲的连续特征缩放到统一的范围,以避免某些特征对模型训练产生过大影响。常用的方法有Min-Max归一化(将数据缩放到[0,1]区间)和Z-score标准化(将数据转换为均值为0,方差为1的分布)。本研究将采用Min-Max归一化。

  • 数据集划分:

     将预处理后的数据集划分为训练集和测试集。通常采用7:3或8:2的比例。训练集用于模型训练和参数优化,测试集用于评估模型的泛化能力。

5. 结论与展望

本研究成功地将最小二乘支持向量机(LSSVM)应用于城市公共自行车租赁数量的预测。通过对历史租赁数据、气象数据和节假日信息等多源数据的整合与预处理,构建了一个多变量LSSVM预测模型。实验结果表明,LSSVM模型在预测精度、鲁棒性及计算效率方面均表现出显著优势,其性能优于传统的多元线性回归、标准支持向量回归和BP神经网络等对比模型。这充分证明了LSSVM在处理自行车租赁这类非线性、高维度、非平稳性时间序列预测问题上的有效性。

本研究的成果为城市公共自行车系统的智能化运营和管理提供了有力的技术支持。准确的租赁数量预测有助于:

  • 资源优化配置:

     指导自行车和停车桩的智能调度,减少空置率和饱和率,提升车辆周转效率。

  • 提升用户体验:

     确保在高峰期有足够的车辆可用,在低谷期避免车辆堆积,提高用户满意度。

  • 辅助决策:

     为城市规划者提供数据依据,优化站点布局、线路规划和基础设施建设。

尽管LSSVM模型在本次研究中表现优异,但仍有进一步提升的空间。未来的研究可以从以下几个方面展开:

  • 多模型融合预测:

     尝试将LSSVM与其他机器学习模型(如深度学习模型LSTM、GRU)或传统时间序列模型进行融合,构建集成预测系统,以期进一步提升预测精度和鲁棒性。

  • 考虑站点级别预测:

     本研究主要关注城市整体或区域性的租赁数量预测,未来可深入研究针对特定站点的精细化预测,这对于站点级的车辆调度更为关键。

  • 引入更多外部因素:

     探索将城市活动、交通事件、人口流动数据、历史疫情等更多潜在影响因素纳入模型。

  • 动态参数优化:

     研究自适应或动态调整LSSVM参数的方法,以应对数据分布变化和外部环境不确定性。

  • 实时预测与预警机制:

     基于实时数据流,开发LSSVM在线预测系统,并建立租赁异常预警机制。

⛳️ 运行结果

图片

图片

图片

🔗 参考文献

[1] 赵洋,陈国顺,马飒飒,等.基于OS-LSSVM的电子装备在线故障预测模型研究[J].计算机测量与控制, 2012, 20(11):4.DOI:CNKI:SUN:JZCK.0.2012-11-013.

[2] 刘林.基于LSSVM的短期交通流预测研究与应用[D].西南交通大学,2011.DOI:10.7666/d.y1957260.

[3] 俞家珊.基于改进的谱聚类算法和TTLSSA-LSSVM的短期电力负荷预测[D].江南大学,2021.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值