动态规划之背包问题系列(一)

问题描述:

给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。

分类:

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。 第 i件物品的体积是 v_i,价值是 w_i。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。

问题变形
完全背包:每种物品都有无限多个可用;
多重背包:每种物品有s[i] 个可用;
分组背包:物品有 N组,每一组里面只能选一个物品。
01背包问题 完全背包问题 多重背包问题 ,恰好装满、求方案总数、求所有的方案等

知识点important

dp(动态规划)&&dfs(深度优先)

01背包问题:

一共有N件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?

思路:
如果穷举的话,时间复杂度太大,故dp
定义状态dp:
dp[i][j]表示将前i件物品装进限重为j的背包可以获得的最大价值, 0<=i<=N, 0<=j<=W
初始化,当 i > 0 时dp[i][j]有两种情况:
不装入第i件物品,即dp[i−1][j];
装入第i件物品(前提是能装下),即dp[i−1][j−w[i]] + v[i]。

即其状态转移方程为:
dp[i][j] = max(dp[i−1][j], dp[i−1][j−w[i]]+v[i]) // j >=w[i]

特别的:为了防止上一层被覆盖,循环采用逆向枚举

// 01背包问题伪代码(空间优化版)
dp[0,...,W] = 0
for i = 1,...,N
    for j = W,...,w[i] // 必须逆向枚举!!!
        dp[j] = max(dp[j], dp[j−w[i]]+v[i])

采用这个方法的好处是避免了不必要的重复计算

//dfs
#include <stdlib.h>
#include <string.h>



int Knapsack(int* v, int* w, int n, int target) {
//Knapsack 函数接受三个参数:v、w 和 target,分别表示物品的体积、价值和背包的体积。
const int N = n + 1;
//申请大小为 (n+1) x (target+1) 的二维数组 cache 用于存储中间结果
int** cache = (int**)malloc(sizeof(int*) * N);
for (int i = 0; i < N; i++) {
cache[i] = (int*)malloc(sizeof(int) * (target + 1));
memset(cache[i], -1, sizeof(int) * (target + 1));
}
int dfs(int i, int j) {
//定义内部函数 dfs,用于递归求解问题
//参数 i 和 j,分别表示剩余的物品数量和背包的剩余体积
if (i == 0) return 0;//当没有物品可选时,价值为 0
if (cache[i][j] != -1) return cache[i][j];//cache[i][j] 已经有值,直接返回
//cache[i][j] 表示前 i 个物品放入体积为 j 的背包的最大价值
int res = dfs(i - 1, j);
if (j >= v[i - 1]) res = max(res, dfs(i - 1, j - v[i - 1]) + w[i - 1]);
//先递归求解不选第 i 个物品的情况,然后考虑选第 i 个物品
//第 i 个物品的体积超过当前背包剩余的体积,则必须放弃该物品
//放入背包并更新最大价值
cache[i][j] = res;
return res;
}
//调用 dfs(n, target) 求解问题,并释放动态分配的内存
int result = dfs(n, target);
for (int i = 0; i < N; i++) free(cache[i]);
free(cache);
return result;
}
//dfs->dp
#include <string.h>

const int N = 1010;

int Knapsack(int* v, int* w, int n, int target) {
int dp[N][N]; memset(dp, 0, sizeof(dp));//dp 数组全部初始化为 0
//使用两个嵌套的循环来填充 dp 数组中的值
for (int i = 1; i <= n; i ++) {//枚举所有物品
for (int j = 0; j <= target; j ++) {//枚举所有体积
dp[i][j] = dp[i - 1][j];
//不选该物品,背包的价值就是前 i-1 个物品放入 j 体积的背包的价值
//选该物品,背包的价值就是前 i-1 个物品放入 j-v(i) 体积的背包的价值加上第 i 个物品的价值
//将价值较大的作为 dp(i, j) 的值
if (v[i - 1] <= j) dp[i][j] = max(dp[i][j], dp[i - 1][j - v[i - 1]] + w[i - 1]);
}
}
return dp[n][target];
}

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])
1、对于每次循环的下一组i,只会用到i-1来更新当前值。于是可以在这次更新的时候,
将原来的值更新掉,反正以后也用不到,所以对于i的更新,只需用一个数组。也就
滚动数组,每次根据上一层的值更新当前层的值。(优化掉一维)
2、对于每次j的更新,只需用到之前i-1时的j或者j-v[i],不会用到后面的值,同时为
了防止当前用于更新的之前i-1层的d[j] 或 d[j - v[i]]之前被更新过,采用从后
往前的方式遍历j。(优化j的循环次数)

//dp
//滚动数组的思想来实现空间优化
int Knapsack(int* v, int* w, int n, int target) {
const int N = 1010;
int dp[N]; memset(dp, 0, sizeof(dp));
for (int i = 1; i <= n; i ++) {
for (int j = target; j >= v[i - 1]; j -- ) {
dp[j] = max(dp[j], dp[j - v[i - 1]] + w[i - 1]);
}
}
return dp[target];
}

2. 完全背包

题目
完全背包与01背包不同就是每种物品可以有无限多个:一共有N种物品,每种物品有无限多个,第i(i从1开始)种物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?

// 完全背包问题**Way1**伪代码(空间优化版)
dp[0,...,W] = 0
for i = 1,...,N
    for j = w[i],...,W // 必须正向枚举!!!
        dp[j] = max(dp[j], dp[j−w[i]]+v[i])

way2
取0件、1件、2件…直到超过限重(k > j/w[i])
思路与01问题相同,就是MAX改了

k为装入第i种物品的件数,
k <= j/w[i] dp[i][j] = max{(dp[i-1][j − kw[i]] +kv[i]) for every k}

// 完全背包问题**Way2**伪代码(空间优化版)
dp[0,...,W] = 0
for i = 1,...,N
    for j = W,...,w[i] // 必须逆向枚举!!!
        for k = [0, 1,..., j/w[i]]
            dp[j] = max(dp[j], dp[j−k*w[i]]+k*v[i])

二进制的思想

把第 i 种物品拆成
重量为
在这里插入图片描述
价值为
在这里插入图片描述

的若干件物品,其中 k 取遍满足在这里插入图片描述
的非负整数。

这是因为不管最优策略选几件第 i 种物品,总可以表示成若干个刚才这些物品的和
这样就将转换后的物品数目降成了对数级别。

#include <stdio.h>
#include <string.h>

#define N 1010

int Knapsack(int *v, int *w, int target, int n) { // target表示背包体积
int dp[N][N];
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= n; i ++ ) {
for (int j = 0; j <= target; j ++ ) {
for (int k = 0; k * v[i - 1] <= j; k ++ ) {
dp[i][j] = (dp[i][j] > dp[i - 1][j - k * v[i - 1]] + k * w[i - 1]) ? dp[i][j] : dp[i - 1][j - k * v[i - 1]] + k * w[i - 1];
}
}
}
return dp[n][target];
}

int main() {
int v[] = {2, 3, 4};
int w[] = {3, 4, 5};
int target = 5;
int n = sizeof(v) / sizeof(int);
printf("The maximum value of the knapsack is %d.\n", Knapsack(v, w, target, n));
return 0;
}
//优化
#include <stdio.h>
#include <string.h>

#define N 1010

int Knapsack(int *v, int *w, int target, int n) { // target表示背包体积
int dp[N][N];
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= n; i ++ ) {
for (int j = 0; j <= target; j ++ ) {
dp[i][j] = dp[i - 1][j];
if (j >= v[i - 1]) dp[i][j] = (dp[i - 1][j] > dp[i][j - v[i - 1]] + w[i - 1]) ? dp[i - 1][j] : dp[i][j - v[i - 1]] + w[i - 1];
}
}
return dp[n][target];
}

int main() {
int v[] = {2, 3, 4};
int w[] = {3, 4, 5};
int target = 5;
int n = sizeof(v) / sizeof(int);
printf("The maximum value of the knapsack is %d.\n", Knapsack(v, w, target, n));
return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 您可以参考以下C语言代码实现动态规划0-1背包问题: int knapsack(int n, int w[], int v[], int W) { int i, j; int K[n+1][W+1]; for (i = 0; i <= n; i++) { for (j = 0; j <= W; j++) { if (i==0 || j==0) K[i][j] = 0; else if (w[i-1] <= j) K[i][j] = max(v[i-1] + K[i-1][j-w[i-1]], K[i-1][j]); else K[i][j] = K[i-1][j]; } } return K[n][W]; } ### 回答2: 动态规划是一种常见的算法思想,可以解决一些优化问题。0-1背包问题动态规划中的一个经典问题,可以用C语言来实现。 0-1背包问题是指有一个背包,容量为C,有n个物品,每个物品的重量分别为w1, w2, ..., wn,价值分别为v1, v2, ..., vn。要求选择一些物品放入背包,使得背包中物品的总价值最大,但不能超过背包的容量。 我们可以使用二维数组dp来记录每个状态下的最大价值。dp[i][j]表示在前i个物品中选择,在背包容量为j时的最大价值。 具体的实现步骤如下: 1. 初始化dp数组,将所有元素置为0。 2. 使用两个循环遍历每个物品和每个背包容量。 - 当物品i的重量大于背包容量j时,dp[i][j]等于dp[i-1][j],即不选择物品i。 - 当物品i的重量小于等于背包容量j时,比较选择物品i和不选择物品i的价值,选择较大的方案更新dp[i][j]:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)。 3. 最终dp[n][C]即为所求的最大价值。 以下是代码实现的示例: ```c #include <stdio.h> #define N 100 #define C 1000 int max(int a, int b) { return (a > b) ? a : b; } int knapsack(int n, int w[], int v[], int c) { int dp[N][C] = {0}; for (int i = 1; i <= n; i++) { for (int j = 1; j <= c; j++) { if (w[i-1] > j) { dp[i][j] = dp[i-1][j]; } else { dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]); } } } return dp[n][c]; } int main() { int n, c; int w[N], v[N]; printf("请输入物品个数和背包容量:"); scanf("%d %d", &n, &c); printf("请输入每个物品的重量和价值:\n"); for (int i = 0; i < n; i++) { scanf("%d %d", &w[i], &v[i]); } int max_value = knapsack(n, w, v, c); printf("背包能获得的最大价值为:%d\n", max_value); return 0; } ``` 以上就是用C语言实现动态规划0-1背包问题的代码。通过动态规划思想,我们可以高效地解决这个问题,并找到在给定容量下能获得的最大价值。 ### 回答3: 动态规划是一种解决问题的算法思想,可以用于解决0-1背包问题。0-1背包问题是指有一个容量为V的背包和一系列物品,每个物品有自己的价值和重量,在限定容量的情况下,如何选择物品放入背包,使得背包中物品的总价值最大。 以下是用C语言实现0-1背包问题动态规划代码: ```c #include <stdio.h> int max(int a, int b) { return (a > b) ? a : b; } int knapSack(int W, int wt[], int val[], int n) { int i, w; int K[n + 1][W + 1]; for (i = 0; i <= n; i++) { for (w = 0; w <= W; w++) { if (i == 0 || w == 0) K[i][w] = 0; else if (wt[i - 1] <= w) K[i][w] = max(val[i - 1] + K[i - 1][w - wt[i - 1]], K[i - 1][w]); else K[i][w] = K[i - 1][w]; } } return K[n][W]; } int main() { int val[] = {60, 100, 120}; int wt[] = {10, 20, 30}; int W = 50; int n = sizeof(val) / sizeof(val[0]); printf("背包中物品的最大总价值为 %d\n", knapSack(W, wt, val, n)); return 0; } ``` 该代码通过创建一个二维数组K来记录计算的结果。其中K[i][w]表示在前i个物品中选择总重量不超过w的物品的最大总价值。 在代码中,我们使用两个for循环来遍历所有的物品和背包容量。当物品的重量小于等于当前背包容量时,我们选择将该物品放入背包,计算放入该物品和不放入该物品的两种情况下的最大总价值。 最终返回K[n][W]即可得到在给定容量下的最大总价值。在我们的示例中,背包中物品的最大总价值为220。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏生十一_Nojambot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值