算法分析与设计之随机算法

本文介绍了随机算法在数值计算中的两个应用实例:一是利用MonteCarlo方法估算圆周率π,通过在正方形内随机投点并统计圆内点的比例;二是用随机投点法和平均值方法计算函数的定积分。这两种方法都基于概率统计原理,展示了随机算法在解决复杂计算问题时的简洁和有效性。
摘要由CSDN通过智能技术生成

特点:可能对,可能错,随机性,不确定性

数值随机算法

例1: 计算 pi 值?

思想:在一个正方形中画一个圆,随机产生很多个点,通过统计并计算在圆中的点的个数与所有点的比值来近似地计算 pi

 Monte Carlo 方法,可以通过统计随机点在圆内的个数与总点数的比例来估算圆周率的值。

具体实现方法是,在正方形中随机生成大量点,计算这些点到正方形中心的距离,如果距离小于等于正方形边长的一半,则认为该点在正方形内,并判断该点是否在圆内。根据概率统计可知,圆内点数与总点数的比例应该近似于圆的面积与正方形面积的比例,即

通过求解可得 ,因此可以使用这个方法来估算圆周率的值。

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main()
{
    int total = 1000000; // 总点数
    int in_circle = 0;   // 圆内点数

    srand(time(NULL)); // 初始化随机数发生器

    for (int i = 0; i < total; i++) {
        // 在正方形内生成随机点
        double x = rand() / (double)RAND_MAX * 2 - 1; // [-1, 1] 内的随机数
        double y = rand() / (double)RAND_MAX * 2 - 1; // [-1, 1] 内的随机数

        // 判断点是否在圆内
        if (x * x + y * y <= 1) {
            in_circle++;
        }
    }

    // 计算圆周率
    double pi = 4.0 * in_circle / total;

    printf("Estimated pi: %f\n", pi);

    return 0;
}

例2: 计算积分

  • 方法一:随机投点法
  • 好理解

 

 在矩形中随机产生一些点,求落在蓝色区域的概率P,PXS=所求

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>

double f(double x) {
    return x * x; // 这里以f(x)=x^2举例
}

double calculusRand1(double a, double b, double M, int n) {
    int k = 0;     // 记录落在函数下方的随机点数
    srand((unsigned)time(NULL)); // 初始化随机种子

    for (int i = 1; i <= n; ++i) {
        double x = a + (double)rand() / RAND_MAX * (b - a); // 在[a, b]之间随机产生x值
        double y = (double)rand() / RAND_MAX * M;           // 在[0, M]之间随机产生y值
        if (y <= f(x)) k++;   // 如果随机点(x, y)在函数下方,计数器k加1
    }

    double result = M * (b - a) * ((double)k / n); // 计算定积分近似值
    return result;
}

int main() {
    double a = 0, b = 1, M = 1;
    int n = 1000000;
    double result = calculusRand1(a, b, M, n);
    printf("The definite integral of f(x) between %f and %f is approximately: %f\n", a, b, result);
    return 0;
}
  • 方法二:平均值方法
  • 一个随机变量X 的数学期望 E(X)可以通过在 n次随机实验中观察值 x1,x2,...xn 的算数平均值 来近似

 原理:

计算, 的期望,就ok了

对给定区间 [a,b] 进行随机抽样,并将抽样点代入函数 g(x) 进行计算。具体来说,我们可以使用 rand 函数生成 [a,b] 中的随机整数,然后计算对应的函数值 g(x),并将它累加到变量 I 中。最后,将 (b-a)*I/n 作为结果返回即可

 

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

double g(double x) {
}

int main() {
    int n;
    double a, b, I = 0.0;
    scanf("%lf %lf %d", &a, &b, &n);
    srand(time(NULL)); 
    for (int i = 1; i <= n; i++) {
        double x = a + (double)rand() / RAND_MAX * (b - a);  // 生成随机抽样点
        I += g(x);  // 计算函数值,并累加到 I 中
    }
    double ans = (b - a) * I / n;
    printf("%.6lf\n", ans);
    return 0;
}

C. Square Table

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

While resting on the ship after the "Russian Code Cup" a boy named Misha invented an interesting game. He promised to give his quadrocopter to whoever will be the first one to make a rectangular table of size n × m, consisting of positive integers such that the sum of the squares of numbers for each row and each column was also a square.

Since checking the correctness of the table manually is difficult, Misha asks you to make each number in the table to not exceed 108.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 100)  — the size of the table.

Output

Print the table that meets the condition: n lines containing m integers, separated by spaces. If there are multiple possible answers, you are allowed to print anyone. It is guaranteed that there exists at least one correct answer.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>

int IsSquare(int a) {
    int k = (int)sqrt(a);
    if (k * k == a)  return 1;
    return 0;
}

int main() {
    int n, m;
    while (scanf("%d%d", &n, &m) != EOF) {
        int a, b, c, d;
        while (2 > 1) {
            a = rand() % 100 + 1;
            b = rand() % 100 + 1;
            c = rand() % 100 + 1;
            d = rand() % 100 + 1;
            int s1 = (m - 1) * a * a + b * b;
            int s2 = (n - 1) * a * a + c * c;
            int s3 = (m - 1) * c * c + d * d;
            int s4 = (n - 1) * b * b + d * d;
            if (IsSquare(s1) && IsSquare(s2) && IsSquare(s3) && IsSquare(s4)) {
                break;
            }
        }
        for (int i = 0; i < n - 1; i++) {
            for (int j = 0; j < m - 1; j++) {
                printf("%d ", a);
            }
            printf("%d\n", b);
        }
        for (int j = 0; j < m - 1; j++) {
            printf("%d ", c);
        }
        printf("%d\n", d);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏生十一_Nojambot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值