1.数据类型介绍
在C语言中我们已知有许多的内置类型(如下)
类型的意义:
1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2. 如何看待内存空间的视角。
类型分类
如果对类型进行一个精细的分类的话可以分类成:整形类型、浮点数类型、构造类型(自定义类型)、指针类型、空类型。
①整形类型:
(char类型在存储时存入的是ASCII码值,而ASCII码值是整数,所以将char类型分入整形类型)
一般来说int ==(等价于)signed int,对char来说却有所不同
②浮点数类型:
③构造类型(自定义类型):
④指针类型:
⑤空类型:
2.整形在内存中的储存
我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。
那接下来我们谈谈数据在所开辟内存中到底是如何存储的?
int a = 20;
int b = -10;
我们知道为 a 分配四个字节的空间。那如何将其存储起来呢?
①原码、反码、补码
计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位正数的原、反、补码都相同。负整数的三种表示方法各不相同。
原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码
反码+1就得到补码。
在这里就以上述的a与b来举例
因为a = 20(为正数);
因为b = -10(为负数);
对于整形来说:数据存放内存中其实存放的是补码。
为什么呢?
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
运算过程如下
对于CPU中只有加法,有人可能会不太明白,那我们就再举个例子
int a = 1;
int b = 1;
int c = a - b;
注:在1的补码(00000000000000000000000000000001)与-1的补码(11111111111111111111111111111111)相加时得到(100000000000000000000000000000000)因为它超过了32位所以将最左边的位舍去后,剩下(00000000000000000000000000000000)即0。
②大小端
我们看看a = 20;与b = -10;在内存中的储存
我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲。
这是又为什么?
什么是大端小端:
大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。
这样说可能不太形象,我们还是用图例来解释
注:
百度2015年系统工程师笔试题:
请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。(10分)
图例分析如下
③隐式类型转换
什么是整形提升?
C语言的整型算术运算总是至少以缺省整型类型的精度来进行的。为了获得这个精度,表达式中的字符和短整型操作数在使用之前被转换为普通整型,这种转换称为整型提升。
整型提升的意义:
表达式的整型运算要在CPU的相应运算器件内执行,CPU内整型运算器(ALU)的操作数的字节长度一般就是int的字节长度,同时也是CPU的通用寄存器的长度。因此,即使两个char类型的相加,在CPU执行时实际上也要先转换为CPU内整型操作数的标准长度。
通用CPU(general-purpose CPU)是难以直接实现两个8比特字节直接相加运算(虽然机器指令中可能有这种字节相加指令)。所以,表达式中各种长度可能小于int长度的整型值,都必须先转换为int或unsigned int,然后才能送入CPU去执行运算。
//实例1
char a,b,c;
...
a = b + c;
b和c的值被提升为普通整型,然后再执行加法运算。
加法运算完成之后,结果将被截断,然后再存储于a中。
如何进行整体提升呢?
整形提升是按照变量的数据类型的符号位来提升的
实例
在这里我们举几个例子
例1
int main()
{
char a = 127;//01111111
char b = 3;//00000011
char c = a + b;
printf("%d\n", c);
return 0;
}
例2
int main()
{
char a = 0xb6;
short b = 0xb600;
int c = 0xb6000000;
if(a==0xb6)//10110110
printf("a");
if(b==0xb600)
printf("b");
if(c==0xb6000000)
printf("c");
return 0;
}
例2中的a,b要进行整形提升,但是c不需要整形提升
a,b整形提升之后,变成了负数,所以表达式 a==0xb6 , b==0xb600 的结果是假,但是c不发生整形提升,则表
达式 c==0xb6000000 的结果是真.
所以程序输出的结果是:c
例3
int main()
{
char c = 1;
printf("%u\n", sizeof(c));//1
printf("%u\n", sizeof(+c));
printf("%u\n", sizeof(-c));
return 0;
}
实例2中的,c只要参与表达式运算,就会发生整形提升,表达式 +c ,就会发生提升,所以 sizeof(+c) 是4个字节.
表达式 -c 也会发生整形提升,所以 sizeof(-c) 是4个字节,但是 sizeof(c) ,就是1个字节.
3.浮点型在内存中的储存
①经典例子
在这里我们举一个有关浮点型的经典例子
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
在我们理所当然地认为答案是9/9.0/9/9.0后,在运行后发现此种情况不免会大吃一惊,而从这个结果中我们也不难发现,整形与浮点型的储存方式是截然不同的,不然也不会出现上图的情况。
②浮点数的储存方式
num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:
(-1)^S * M * 2^E
(-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
M表示有效数字,大于等于1,小于2。
2^E表示指数位。
即下图
举例来说:
十进制的5.0,写成二进制是101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。
那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最高的1位是符号位S,接着的8位是指数E,剩下的23位为有效数字M。
对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。
IEEE 754对有效数字M和指数E,还有一些特别规定。
特殊规定
对M
前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。
比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。
以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
对E
首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。
但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。
比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
然后,指数E从内存中取出还可以再分成三种情况:
⑴E不全为0或不全为1
这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:
0 01111110 00000000000000000000000
⑵E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
⑶E全为1
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
③算数转换
如果某个操作符的各个操作数属于不同的类型,那么除非其中一个操作数的转换为另一个操作数的类
型,否则操作就无法进行。下面的层次体系称为寻常算术转换。
如果某个操作数的类型在上面这个列表中排名较低,那么首先要转换为另外一个操作数的类型后执行运
算。
警告:
但是算术转换要合理,要不然会有一些潜在的问题。
float f = 3.14;
int num = f;//隐式转换,会有精度丢失