描述
厦门大学依山傍水,一共有情人谷、芙蓉隧道、芙蓉湖…等N个可游玩的景点,并且两两之间都有一条通路。
由于访客数量太多,游玩途中常常出现拥堵,所以在节假日期间每段路限制游客只能通行一次。
假期你的朋友来厦大游玩,你要如何规划路线,帮他以最短路线访问所有景点呢?
要求从第一个景点出发,假定从所有景点都可以离开厦大。
出题者:邱梦薇同学
感谢李岩铭同学纠错
输入
第一行是一个整数n(1<=n<=8),表示景点的个数,景点编号从0开始。
接下来是一个n*n的对称矩阵,元素dis[i,j]表示景点i与景点j之间道路的长度(1<=dis[i,j]<=10000,dis[i,i]=0,dis[i,j]=dis[j,i])
输出
输出最短路线的长度
#include <iostream>
#include <algorithm>
using namespace std;
int n;
double dist[9][9];
int x[9];
double mind = 1e9;
double cw = 0;
void tsp(int i)
{
if (i == n - 1)
{
mind = min(mind, cw + dist[x[i - 1]][x[i]]);
}
else
{
for (int j = i; j < n - 1; j++)
{
if (cw + dist[x[i - 1]][x[j]] < mind)
{
int temp = x[i];
x[i] = x[j];
x[j] = temp;
cw += dist[x[i - 1]][x[i]];
tsp(i + 1);
cw -= dist[x[i - 1]][x[i]];
x[j] = x[i];
x[i] = temp;
}
}
}
}
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
{
cin >> dist[i][j];
}
for (int i = 0; i < n; i++)
x[i] = i;
tsp(1);
cout << mind << endl;
}