知识点回顾
网格搜索
随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)
贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)
time库的计时模块,方便后人查看代码运行时长
对于信贷数据的其他模型,如LightGBM和KNN 尝试用下贝叶斯优化和网格搜索
1.数据预处理
import pandas as pd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 设置中文字体(解决中文显示问题)
plt.rcParams['font.sans-serif'] = ['SimHei'] # Windows系统常用黑体字体
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
data = pd.read_excel('data.xlsx') #读取数据
# 先筛选字符串变量
discrete_features = data.select_dtypes(include=['object']).columns.tolist()
# Home Ownership 标签编码
home_ownership_mapping = {
'Own Home': 1,
'Rent': 2,
'Have Mortgage': 3,
'Home Mortgage': 4
}
data['Home Ownership'] = data['Home Ownership'].map(home_ownership_mapping)
# Years in current job 标签编码
years_in_job_mapping = {
'< 1 year': 1,
'1 year': 2,
'2 years': 3,
'3 years': 4,
'4 years': 5,
'5 years': 6,
'6 years': 7,
'7 years': 8,
'8 years': 9,
'9 years': 10,
'10+ years': 11
}
data['Years in current job'] = data['Years in current job'].map(years_in_job_mapping)
# Purpose 独热编码,记得需要将bool类型转换为数值
data = pd.get_dummies(data, columns=['Purpose'])
data2 = pd.read_excel("data.xlsx") # 重新读取数据,用来做列名对比
list_final = [] # 新建一个空列表,用于存放独热编码后新增的特征名
for i in data.columns:
if i not in data2.columns:
list_final.append(i) # 这里打印出来的就是独热编码后的特征名
for i in list_final:
data[i] = data[i].astype(int) # 这里的i就是独热编码后的特征名
# Term 0 - 1 映射
term_mapping = {
'Short Term': 0,
'Long Term': 1
}
data['Term'] = data['Term'].map(term_mapping)
data.rename(columns={'Term': 'Long Term'}, inplace=True) # 重命名列
continuous_features = data.select_dtypes(include=['int64', 'float64']).columns.tolist() #把筛选出来的列名转换成列表
# 连续特征用中位数补全
for feature in continuous_features:
mode_value = data[feature].mode()[0] #获取该列的众数。
data[feature].fillna(mode_value, inplace=True) #用众数填充该列的缺失值,inplace=True表示直接在原数据上修改。
2.划分数据集
from sklearn.model_selection import train_test_split
X = data.drop(['Credit Default'], axis=1) # 特征,axis=1表示按列删除
y = data['Credit Default'] # 标签
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集
3.调参
from sklearn.ensemble import RandomForestClassifier #随机森林分类器
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score # 用于评估分类器性能的指标
from sklearn.metrics import classification_report, confusion_matrix #用于生成分类报告和混淆矩阵
import warnings #用于忽略警告信息
warnings.filterwarnings("ignore") # 忽略所有警告信息
# --- 1. 默认参数的随机森林 ---
print("--- 1. 默认参数随机森林 (训练集 -> 测试集) ---")
import time # time库,主要用于时间相关的操作,因为调参需要很长时间,记录下会帮助后人知道大概的时长
start_time = time.time() # 记录开始时间
rf_model = RandomForestClassifier(random_state=42)
rf_model.fit(X_train, y_train) # 在训练集上训练
rf_pred = rf_model.predict(X_test) # 在测试集上预测
end_time = time.time() # 记录结束时间
print(f"训练与预测耗时: {end_time - start_time:.4f} 秒")
print("\n默认随机森林 在测试集上的分类报告:")
print(classification_report(y_test, rf_pred))
print("默认随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, rf_pred))
--- 1. 默认参数随机森林 (训练集 -> 测试集) ---
训练与预测耗时: 0.8787 秒
默认随机森林 在测试集上的分类报告:
precision recall f1-score support
0 0.77 0.97 0.86 1059
1 0.79 0.30 0.43 441
accuracy 0.77 1500
macro avg 0.78 0.63 0.64 1500
weighted avg 0.77 0.77 0.73 1500
默认随机森林 在测试集上的混淆矩阵:
[[1023 36]
[ 309 132]]
# --- 2. 网格搜索优化随机森林 ---
print("\n--- 2. 网格搜索优化随机森林 (训练集 -> 测试集) ---")
from sklearn.model_selection import GridSearchCV
# 定义要搜索的参数网格
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
# 创建网格搜索对象
grid_search = GridSearchCV(estimator=RandomForestClassifier(random_state=42), # 随机森林分类器
param_grid=param_grid, # 参数网格
cv=5, # 5折交叉验证
n_jobs=-1, # 使用所有可用的CPU核心进行并行计算
scoring='accuracy') # 使用准确率作为评分标准
start_time = time.time()
# 在训练集上进行网格搜索
grid_search.fit(X_train, y_train) # 在训练集上训练,模型实例化和训练的方法都被封装在这个网格搜索对象里了
end_time = time.time()
print(f"网格搜索耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", grid_search.best_params_) #best_params_属性返回最佳参数组合
# 使用最佳参数的模型进行预测
best_model = grid_search.best_estimator_ # 获取最佳模型
best_pred = best_model.predict(X_test) # 在测试集上进行预测
print("\n网格搜索优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("网格搜索优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
--- 2. 网格搜索优化随机森林 (训练集 -> 测试集) ---
网格搜索耗时: 92.9777 秒
最佳参数: {'max_depth': 20, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200}
网格搜索优化后的随机森林 在测试集上的分类报告:
precision recall f1-score support
0 0.76 0.97 0.86 1059
1 0.80 0.28 0.42 441
accuracy 0.77 1500
macro avg 0.78 0.63 0.64 1500
weighted avg 0.77 0.77 0.73 1500
网格搜索优化后的随机森林 在测试集上的混淆矩阵:
[[1028 31]
[ 317 124]]
# --- 2. 贝叶斯优化随机森林 ---
print("\n--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---")
from bayes_opt import BayesianOptimization
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import classification_report, confusion_matrix
import time
import numpy as np
# 假设 X_train, y_train, X_test, y_test 已经定义好
# 定义目标函数,这里使用交叉验证来评估模型性能
def rf_eval(n_estimators, max_depth, min_samples_split, min_samples_leaf):
n_estimators = int(n_estimators)
max_depth = int(max_depth)
min_samples_split = int(min_samples_split)
min_samples_leaf = int(min_samples_leaf)
model = RandomForestClassifier(
n_estimators=n_estimators,
max_depth=max_depth,
min_samples_split=min_samples_split,
min_samples_leaf=min_samples_leaf,
random_state=42
)
scores = cross_val_score(model, X_train, y_train, cv=5, scoring='accuracy')
return np.mean(scores)
# 定义要搜索的参数空间
pbounds_rf = {
'n_estimators': (50, 200),
'max_depth': (10, 30),
'min_samples_split': (2, 10),
'min_samples_leaf': (1, 4)
}
# 创建贝叶斯优化对象,设置 verbose=2 显示详细迭代信息
optimizer_rf = BayesianOptimization(
f=rf_eval, # 目标函数
pbounds=pbounds_rf, # 参数空间
random_state=42, # 随机种子
verbose=2 # 显示详细迭代信息
)
start_time = time.time()
# 开始贝叶斯优化
optimizer_rf.maximize(
init_points=5, # 初始随机采样点数
n_iter=32 # 迭代次数
)
end_time = time.time()
print(f"贝叶斯优化耗时: {end_time - start_time:.4f} 秒")
print("最佳参数: ", optimizer_rf.max['params'])
# 使用最佳参数的模型进行预测
best_params = optimizer_rf.max['params']
best_model = RandomForestClassifier(
n_estimators=int(best_params['n_estimators']),
max_depth=int(best_params['max_depth']),
min_samples_split=int(best_params['min_samples_split']),
min_samples_leaf=int(best_params['min_samples_leaf']),
random_state=42
)
best_model.fit(X_train, y_train)
best_pred = best_model.predict(X_test)
print("\n贝叶斯优化后的随机森林 在测试集上的分类报告:")
print(classification_report(y_test, best_pred))
print("贝叶斯优化后的随机森林 在测试集上的混淆矩阵:")
print(confusion_matrix(y_test, best_pred))
--- 2. 贝叶斯优化随机森林 (训练集 -> 测试集) ---
| iter | target | max_depth | min_sa... | min_sa... | n_esti... |
-------------------------------------------------------------------------
| [39m1 [39m | [39m0.7828 [39m | [39m17.49 [39m | [39m3.852 [39m | [39m7.856 [39m | [39m139.8 [39m |
| [39m2 [39m | [39m0.78 [39m | [39m13.12 [39m | [39m1.468 [39m | [39m2.465 [39m | [39m179.9 [39m |
| [39m3 [39m | [39m0.7817 [39m | [39m22.02 [39m | [39m3.124 [39m | [39m2.165 [39m | [39m195.5 [39m |
| [39m4 [39m | [39m0.7825 [39m | [39m26.65 [39m | [39m1.637 [39m | [39m3.455 [39m | [39m77.51 [39m |
| [39m5 [39m | [39m0.7822 [39m | [39m16.08 [39m | [39m2.574 [39m | [39m5.456 [39m | [39m93.68 [39m |
| [39m6 [39m | [39m0.7803 [39m | [39m17.93 [39m | [39m3.082 [39m | [39m5.915 [39m | [39m126.9 [39m |
| [39m7 [39m | [39m0.7772 [39m | [39m10.98 [39m | [39m1.055 [39m | [39m6.804 [39m | [39m158.6 [39m |
| [39m8 [39m | [39m0.7765 [39m | [39m10.09 [39m | [39m1.121 [39m | [39m5.732 [39m | [39m102.8 [39m |
| [39m9 [39m | [39m0.78 [39m | [39m29.42 [39m | [39m3.129 [39m | [39m9.951 [39m | [39m106.1 [39m |
| [39m10 [39m | [39m0.7822 [39m | [39m19.43 [39m | [39m1.481 [39m | [39m8.416 [39m | [39m64.48 [39m |
| [35m11 [39m | [35m0.783 [39m | [35m28.77 [39m | [35m3.119 [39m | [35m5.601 [39m | [35m199.8 [39m |
| [39m12 [39m | [39m0.7798 [39m | [39m26.76 [39m | [39m2.866 [39m | [39m4.587 [39m | [39m197.0 [39m |
| [39m13 [39m | [39m0.78 [39m | [39m13.87 [39m | [39m2.864 [39m | [39m3.986 [39m | [39m165.2 [39m |
| [39m14 [39m | [39m0.7782 [39m | [39m10.13 [39m | [39m2.378 [39m | [39m9.813 [39m | [39m129.0 [39m |
| [39m15 [39m | [39m0.7787 [39m | [39m24.85 [39m | [39m2.575 [39m | [39m4.403 [39m | [39m52.95 [39m |
| [39m16 [39m | [39m0.78 [39m | [39m27.74 [39m | [39m2.593 [39m | [39m4.055 [39m | [39m129.7 [39m |
| [39m17 [39m | [39m0.7805 [39m | [39m14.12 [39m | [39m3.91 [39m | [39m2.115 [39m | [39m60.42 [39m |
| [39m18 [39m | [39m0.7827 [39m | [39m18.97 [39m | [39m1.264 [39m | [39m2.414 [39m | [39m175.5 [39m |
| [39m19 [39m | [39m0.7765 [39m | [39m11.66 [39m | [39m3.395 [39m | [39m9.376 [39m | [39m195.7 [39m |
| [39m20 [39m | [39m0.7793 [39m | [39m17.29 [39m | [39m1.86 [39m | [39m7.538 [39m | [39m150.1 [39m |
| [39m21 [39m | [39m0.7822 [39m | [39m19.36 [39m | [39m1.97 [39m | [39m8.328 [39m | [39m64.46 [39m |
| [39m22 [39m | [39m0.781 [39m | [39m29.96 [39m | [39m3.562 [39m | [39m7.921 [39m | [39m199.0 [39m |
| [39m23 [39m | [39m0.7808 [39m | [39m18.14 [39m | [39m2.653 [39m | [39m5.696 [39m | [39m138.2 [39m |
| [39m24 [39m | [39m0.7818 [39m | [39m15.49 [39m | [39m3.068 [39m | [39m9.806 [39m | [39m140.5 [39m |
| [39m25 [39m | [39m0.781 [39m | [39m19.36 [39m | [39m3.244 [39m | [39m9.495 [39m | [39m141.0 [39m |
| [39m26 [39m | [39m0.7808 [39m | [39m21.09 [39m | [39m2.187 [39m | [39m4.491 [39m | [39m174.4 [39m |
| [39m27 [39m | [39m0.7795 [39m | [39m14.4 [39m | [39m3.276 [39m | [39m6.276 [39m | [39m141.1 [39m |
| [39m28 [39m | [39m0.7813 [39m | [39m16.64 [39m | [39m2.866 [39m | [39m2.51 [39m | [39m175.8 [39m |
| [39m29 [39m | [39m0.7793 [39m | [39m28.99 [39m | [39m1.05 [39m | [39m4.297 [39m | [39m199.6 [39m |
| [35m30 [39m | [35m0.7837 [39m | [35m17.5 [39m | [35m2.553 [39m | [35m8.927 [39m | [35m138.6 [39m |
| [39m31 [39m | [39m0.7795 [39m | [39m16.56 [39m | [39m3.761 [39m | [39m9.857 [39m | [39m137.2 [39m |
| [39m32 [39m | [39m0.7793 [39m | [39m17.35 [39m | [39m1.551 [39m | [39m8.439 [39m | [39m138.9 [39m |
| [39m33 [39m | [39m0.7798 [39m | [39m17.38 [39m | [39m3.878 [39m | [39m8.473 [39m | [39m139.3 [39m |
| [39m34 [39m | [39m0.779 [39m | [39m24.33 [39m | [39m1.157 [39m | [39m5.795 [39m | [39m76.37 [39m |
| [39m35 [39m | [39m0.7825 [39m | [39m26.71 [39m | [39m1.621 [39m | [39m3.293 [39m | [39m77.47 [39m |
| [39m36 [39m | [39m0.7825 [39m | [39m29.04 [39m | [39m3.905 [39m | [39m5.19 [39m | [39m199.9 [39m |
| [39m37 [39m | [39m0.7825 [39m | [39m18.26 [39m | [39m2.861 [39m | [39m9.151 [39m | [39m138.7 [39m |
=========================================================================
贝叶斯优化耗时: 172.6407 秒
最佳参数: {'max_depth': 17.502236740620297, 'min_samples_leaf': 2.5533082077180316, 'min_samples_split': 8.926771812562555, 'n_estimators': 138.5566475443472}
贝叶斯优化后的随机森林 在测试集上的分类报告:
precision recall f1-score support
0 0.76 0.98 0.86 1059
1 0.83 0.26 0.40 441
accuracy 0.77 1500
macro avg 0.79 0.62 0.63 1500
weighted avg 0.78 0.77 0.72 1500
贝叶斯优化后的随机森林 在测试集上的混淆矩阵:
[[1035 24]
[ 325 116]]