信号与系统思考题1

第三章思考题

问题重述

  • 三角函数与指数函数的表示的频谱对应关系

问题解决

傅里叶变换
欧拉公式
傅里叶级数
时间域信号
频域表示
指数函数表示复指数形式
三角函数表示正弦和余弦
振幅和相位信息

上图为使用mermaid绘制的流程图,指数函数和三角函数都可以表示频域中的信号,并且两种表示中存在特定的对应关系,下面我将从公式推导的角度进行讲解。

基础知识

傅里叶级数

傅里叶级数让我们可以将任何周期函数 f ( t ) f(t) f(t) 表示为正弦和余弦函数的无限和。例如对于周期为 T T T 的函数,傅里叶级数的形式是:

f ( t ) = A 0 + ∑ n = 1 ∞ [ A n cos ⁡ ( 2 π n T t ) + B n sin ⁡ ( 2 π n T t ) ] f(t) = A_0 + \sum_{n=1}^{\infty} \left[ A_n \cos\left(\frac{2\pi n}{T}t\right) + B_n \sin\left(\frac{2\pi n}{T}t\right) \right] f(t)=A0+n=1[Ancos(T2πnt)+Bnsin(T2πnt)]

其中, A 0 A_0 A0 A n A_n An B n B_n Bn 是傅里叶系数,计算方式如下:

A 0 = 1 T ∫ 0 T f ( t )   d t A_0 = \frac{1}{T} \int_{0}^{T} f(t) \, dt A0=T10Tf(t)dt

A n = 2 T ∫ 0 T f ( t ) cos ⁡ ( 2 π n T t )   d t A_n = \frac{2}{T} \int_{0}^{T} f(t) \cos\left(\frac{2\pi n}{T}t\right) \, dt An=T20Tf(t)cos(T2πnt)dt

B n = 2 T ∫ 0 T f ( t ) sin ⁡ ( 2 π n T t )   d t B_n = \frac{2}{T} \int_{0}^{T} f(t) \sin\left(\frac{2\pi n}{T}t\right) \, dt Bn=T20Tf(t)sin(T2πnt)dt

欧拉公式和复数表示

欧拉公式是复数与三角函数之间的桥梁:

e i θ = cos ⁡ ( θ ) + i sin ⁡ ( θ ) e^{i\theta} = \cos(\theta) + i\sin(\theta) eiθ=cos(θ)+isin(θ)

通过欧拉公式,我们可以将傅里叶级数的三角函数形式转换为复指数形式,这使得计算变得更为简便。复数形式的傅里叶级数是:

f ( t ) = ∑ n = − ∞ ∞ C n e i 2 π n T t f(t) = \sum_{n=-\infty}^{\infty} C_n e^{i\frac{2\pi n}{T}t} f(t)=n=CneiT2πnt

其中, C n C_n Cn 是复数傅里叶系数,可以通过以下公式计算:

C n = 1 T ∫ 0 T f ( t ) e − i 2 π n T t   d t C_n = \frac{1}{T} \int_{0}^{T} f(t) e^{-i\frac{2\pi n}{T}t} \, dt Cn=T10Tf(t)eiT2πntdt

傅里叶变换

对于非周期函数,傅里叶级数扩展为傅里叶变换。傅里叶变换提供了一种方法,可以将任何信号分解为一系列不同频率的复指数函数的积分:

F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t   d t F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \, dt F(ω)=f(t)etdt

傅里叶变换的逆变换也允许我们从频域回到时域:

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t   d ω f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} \, d\omega f(t)=2π1F(ω)etdω

在信号处理和频谱分析中,三角函数与指数函数之间的对应关系是基于欧拉公式建立的。正是欧拉公式导致了这种时域到频域之间不同的表示方法。

从三角函数到指数函数的转换

在信号分析中,一个周期信号可以通过傅里叶级数用三角函数(正弦和余弦函数)的和来表示:

f ( t ) = A 0 + ∑ n = 1 ∞ ( A n cos ⁡ ( 2 π n f t ) + B n sin ⁡ ( 2 π n f t ) ) f(t) = A_0 + \sum_{n=1}^{\infty} \left( A_n \cos(2\pi nft) + B_n \sin(2\pi nft) \right) f(t)=A0+n=1(Ancos(2πnft)+Bnsin(2πnft))

通过应用欧拉公式,这个表达式可以转换为使用指数函数的形式:

f ( t ) = ∑ n = − ∞ ∞ C n e i 2 π n f t f(t) = \sum_{n=-\infty}^{\infty} C_n e^{i2\pi nft} f(t)=n=Cnei2πnft

这里, C n C_n Cn 是复数系数,它结合了振幅和相位信息,能够更简洁地表示信号。

指数函数与三角函数的对应

指数函数表示中的 C n C_n Cn与三角函数表示中的 A n A_n An B n B_n Bn之间存在直接的数学关系。具体来说,对于每个频率分量 n n n,其振幅和相位可以通过 C n C_n Cn计算得到,而 A n A_n An B n B_n Bn则分别对应于该频率分量的余弦和正弦分量的振幅。

为了从指数形式的系数 C n C_n Cn 推导出三角形式的系数 A n A_n An B n B_n Bn,我们需要利用复数傅里叶系数 C n C_n Cn C − n C_{-n} Cn 的关系,以及欧拉公式。这一推导过程基于傅里叶级数和傅里叶变换的定义。

给定一个周期性信号 f ( t ) f(t) f(t),其傅里叶级数可以表示为:

f ( t ) = A 0 + ∑ n = 1 ∞ ( A n cos ⁡ ( 2 π n f t ) + B n sin ⁡ ( 2 π n f t ) ) f(t) = A_0 + \sum_{n=1}^{\infty} \left( A_n \cos(2\pi nft) + B_n \sin(2\pi nft) \right) f(t)=A0+n=1(Ancos(2πnft)+Bnsin(2πnft))

同时,信号也可以用复数傅里叶系数表示为:

f ( t ) = ∑ n = − ∞ ∞ C n e i 2 π n f t f(t) = \sum_{n=-\infty}^{\infty} C_n e^{i2\pi nft} f(t)=n=Cnei2πnft

其中, C n C_n Cn 是复数系数,通过傅里叶变换计算得到:

C n = 1 T ∫ − T / 2 T / 2 f ( t ) e − i 2 π n f t   d t C_n = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-i2\pi nft} \, dt Cn=T1T/2T/2f(t)ei2πnftdt

推导 A n A_n An B n B_n Bn

欧拉公式表明 e i θ = cos ⁡ ( θ ) + i sin ⁡ ( θ ) e^{i\theta} = \cos(\theta) + i\sin(\theta) eiθ=cos(θ)+isin(θ),因此:

C n e i 2 π n f t = C n ( cos ⁡ ( 2 π n f t ) + i sin ⁡ ( 2 π n f t ) ) C_n e^{i2\pi nft} = C_n (\cos(2\pi nft) + i\sin(2\pi nft)) Cnei2πnft=Cn(cos(2πnft)+isin(2πnft))

对于 n > 0 n > 0 n>0,我们知道 C − n C_{-n} Cn C n C_n Cn 的共轭,因为 f ( t ) f(t) f(t) 是实数。所以有:

C − n = C n ‾ C_{-n} = \overline{C_n} Cn=Cn

由此可得:

C n = A n 2 − i B n 2 C_n = \frac{A_n}{2} - i\frac{B_n}{2} Cn=2Ani2Bn
C − n = A n 2 + i B n 2 C_{-n} = \frac{A_n}{2} + i\frac{B_n}{2} Cn=2An+i2Bn

因此,我们可以解出 A n A_n An B n B_n Bn

A n = C n + C − n A_n = C_n + C_{-n} An=Cn+Cn
B n = i ( C n − C − n ) B_n = i(C_n - C_{-n}) Bn=i(CnCn)

这里,要注意的是, A n A_n An B n B_n Bn 实际上是 C n C_n Cn C − n C_{-n} Cn 的线性组合。此外,对于 n = 0 n=0 n=0 的情况, A 0 A_0 A0 可以直接通过 C 0 C_0 C0 计算得到,因为它代表了信号的直流(DC)分量:

A 0 = C 0 A_0 = C_0 A0=C0

同时,此处也代表了一种三角函数使用复数的表示方法:

  • 余弦函数(cos)可以表示为: c o s ( x ) = e i x + e − i x 2 cos(x) = \frac{e^{ix} + e^{-ix}}{2} cos(x)=2eix+eix
  • 正弦函数(sin)可以表示为: s i n ( x ) = e i x − e − i x 2 i sin(x) = \frac{e^{ix} - e^{-ix}}{2i} sin(x)=2ieixeix

这样,我们就从复数形式的傅里叶系数 C n C_n Cn 推导出了三角形式的系数 A n A_n An B n B_n Bn。这一过程显示了如何将信号的指数形式转换为更为传统的三角函数形式,从而揭示了两种表示之间的数学联系。

结论

根据对两种表示方法的思考和平时课程的使用,我得到,通过欧拉公式,我们能够将信号的三角函数表示和指数函数表示相互转换,这两种表示方法在信号处理和频谱分析中各有优势。三角函数形式直观地展示了信号的正弦和余弦分量,而指数函数形式则提供了一种更紧凑、更适合数学处理的方式来分析信号的频谱特性。

  • 23
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值