数据结构-图及其应用

图的存储结构:

1.邻接矩阵

#include<stdio.h>
#include<stdlib.h>

#define MAXINT 32767 
#define MVNum 100
#define OK 1
#define ERROR 0
typedef int Status;
typedef char VerTextType;//定义顶点数据类型全为char型
typedef int ArcType;//定义边的权值为整型
typedef struct{
	VerTextType vexs[MVNum];//顶点表 
	ArcType arcs[MVNum][MVNum];//邻接矩阵 
	int vexnum, arcnum;//顶点数和路径数 
}AMGraph;

int LocateVex(AMGraph G, VerTextType u){
	//存在则返回u在顶点表中的下标,否则返回-1
	for(int i = 0;i<G.vexnum; i++)
	{
		if(u==G.vexs[i]) return i;
	}
	return -1;
}

//采用邻接矩阵表示法,创建无线网(UDN算法) 
Status CreatUDN(AMGraph &G){
	VerTextType v1, v2;//定义顶点 
	ArcType w;//定义权重(只能为0或1) 
	printf("请输入顶点数和边数: \n"); 
	scanf("%d %d",&G.vexnum,&G.arcnum);//输入邻接矩阵的顶点数和路径数
	getchar();
	printf("请输入顶点: \n"); 
	for(int i = 0; i < G.vexnum; i++){
		scanf("%c", &G.vexs[i]);
	} //off for i.
	getchar();
	for(int  i = 0;i < G.vexnum; i++){
		for(int j = 0; j<G.vexnum; j++){
			G.arcs[i][j] = MAXINT;//初始化矩阵中的每一个位置为最大值 
		}//off for j.
	}//off for i.
	
	printf("请输入边的两个顶点及权重: \n");
	for(int k = 0; k<G.arcnum; k++){
		scanf("%c %c %d",&v1, &v2, &w);//输入一条边的顶点和权重.
		getchar();
		int i = LocateVex(G,v1);
		int j = LocateVex(G,v2);//确定v1,v2在邻接矩阵中的位置
		G.arcs[i][j] = w;
		G.arcs[j][i]=G.arcs[i][j];
	}
	return OK;
}//off creatUDN

void printGraph(AMGraph G){
	int i, j;
	for(i = 0;i<G.vexnum; i++)
	{
		for(j = 0; j<G.vexnum;j++)
		{
			printf("%-5d ",G.arcs[i][j]);
			if(j==G.vexnum-1) printf("\t\n");
		}
	}
}
//Entrance
int main(){
	AMGraph G;
	CreatUDN(G);
	printGraph(G);
	return 0;
}

2.邻接表:

#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>

/*data:数据域,存储顶点信息 
  firstarc:指针域,指向边表中的第一个节点 
  adjvex:邻接点域 
  nextarc:指针域,指向边表的下一结点 
  info:存储和边或狐有关的信息,如权值
  vex:顶点
  arc:边*/

#define OK 1
#define ERROR 0
#define MVnum 100

typedef char VexTextType;//定义顶点数据类型全为char型
typedef int InfoType;//定义其他信息为int型,如权值等
typedef int Status;

//定义邻接表
//定义边表 
typedef struct ArcNode{
	int adjvex;//该边所指的顶点位置 
	struct ArcNode *nextarc;//指向下一条边的指针 
	InfoType info;//该边的相关信息 
}ArcNode;

//定义顶点表
typedef struct VNode{
	VexTextType data;//顶点信息 
	ArcNode *firstarc;//指向第一条依附该顶点的边的指针 
}VNode, AdjList[MVnum];//AdjList表示邻接表类型

//图
typedef struct{
	AdjList vertices;//邻接表  vertices[i] = VNode[i].data;
	int vexnum, arcnum;//顶点数和边数 
}ALGraph; 

//Locate
int Locate(ALGraph G, VexTextType u){
	//存在则返回u在顶点表中的下标,否则返回-1
	for(int i = 0;i<G.vexnum; i++)
	{
		if(u==G.vertices[i].data) 
			return i;
	}
	return -1;
}

//图邻接表存储建立算法(UDG)
Status CreatUDG(ALGraph &G){
	int v1, v2;
	printf("请输入顶点个数和边数: ");
	scanf("%d %d",&G.vexnum, &G.arcnum);
	printf("请输入顶点: ");
	for(int i = 0;i<G.vexnum;i++){	//输入各点,构造表头结点表 
		scanf("%d",&G.vertices[i].data);		//输入顶点值 
		G.vertices[i].firstarc = NULL;//初始化表头结点指针域为空 
	}
	for(int k = 0;k<G.arcnum;k++){
		printf("请输入一对连接点: "); 
		scanf("%d %d",&v1,&v2);
		int i = Locate(G,v1);
		int j = Locate(G,v2);
		ArcNode *p1 = (ArcNode *)malloc(sizeof(ArcNode));
		p1->adjvex = j;//邻接点序号为j
		p1->nextarc = G.vertices[i].firstarc;
		G.vertices[i].firstarc = p1;//将新节点p1插入顶点vi的边表头部
		ArcNode *p2 =  (ArcNode *)malloc(sizeof(ArcNode));
		p2->adjvex = i;//邻接点序号为i
		p2->nextarc = G.vertices[j].firstarc;
		G.vertices[j].firstarc = p2;//将新节点p2插入顶点vj的边表头部 
	} 
	
	return OK;
} 

void printGraph(ALGraph G){
	ArcNode *p;
	for(int i = 0;i<G.vexnum;i++){
		printf("%d->",G.vertices[i].data);
		p = G.vertices[i].firstarc;
		while(p){
			printf("%d->",G.vertices[p->adjvex].data);
			p = p->nextarc;
		}
		if (p==NULL)
			printf("NULL\n");
	} 
}

int main(){
	ALGraph G;
	CreatUDG(G);
	printGraph(G);
	
	return 0;
}

运行结果:

邻接表和邻接矩阵的区别: 

区别邻接矩阵邻接表
空间复杂度O(N^2)(N为顶点数)O(N+E)(N为顶点数,E为边数)
遍历时间复杂度O(N^2)O(N+E)
增删顶点时间复杂度O(N^2)O(1)
增删边时间复杂度O(1)O(1)

图的遍历:

遍历也分两种:深度优先遍历(DFS)以及广度优先遍历(BFS)

DFS

#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>

#define MVNum 100
#define OK 1
#define ERROR 0

typedef char VerTexType;
 
typedef struct{
	VerTexType vexs[MVNum];//顶点表
	int vexnum,arcnum;//顶点数 
	int arcs[MVNum][MVNum];
}AMGraph;//邻接矩阵 

int visited[MVNum];//已遍历过的节点以1存储在此数组中


void DFS(AMGraph G, int v){
	printf("%c ",G.vexs[v]);
	visited[v] = 1;
	for(int i = 0;i<G.vexnum; i++){
		printf("%d ",visited[i]);
	}
	printf("\n");
	for(int w = 0; w<G.vexnum;  w++){
		if((G.arcs[v][w] != 0)&&(!visited[w]))
			DFS(G,w);
	}
}

void DFSTraver(AMGraph G){
	for(int i = 0; i<G.vexnum; i++){
		visited[i] = 0;
	} 
	for(int i = 0; i<G.vexnum; i++){
		if(visited[i] == 0){
			DFS(G,i);//递归查找 
		}
	}
}

int LocateVex(AMGraph G, VerTexType u){
	//存在则返回u在顶点表中的下标,否则返回-1
	for(int i = 0;i<G.vexnum; i++)
	{
		if(u==G.vexs[i]) return i;
	}
	return -1;
}


void creat(AMGraph &G)
{
	char v1,v2;
	scanf("%d %d",&G.vexnum,&G.arcnum);
	getchar();
	for(int i=0;i<G.vexnum;i++) 
		scanf("%c",&G.vexs[i]);
	getchar();
	for(int i=0;i<G.vexnum;i++) 
		for(int j=0;j<G.vexnum;j++) 
			G.arcs[i][j]=0;
	for(int k=0;k<G.arcnum;k++){
		scanf("%c %c", &v1, &v2);
			getchar();
		int i = LocateVex(G,v1);
		int j = LocateVex(G,v2);//确定v1,v2在邻接矩阵中的位置
		G.arcs[i][j] = 1;
		G.arcs[j][i]=G.arcs[i][j]; 
	}
}

int main(){
	AMGraph G;
	creat(G);
	DFSTraver(G);
	return 0;
}

BFS:

#define MVNum 100                                 //最大顶点数
typedef struct{ //图的结构体定义
    char vexs[MVNum];           //存放顶点的一维数组
    int arcs[MVNum][MVNum];     //邻接矩阵
    int vexnum,arcnum;          //图的顶点数和边数
}Graph;

void BFS(Graph G,int v){ // 按照广度优先非递归遍历连通图G
    cout << v;
    visited[v] = true; // 访问第v个顶点
    InitQueue(Q); // 使用队列辅助遍历,初始化队列Q
    EnQueue(Q,v); // v进队
    while(!QueueEmpty(Q)){ // 队列非空
        DeQueue(Q,u); // 队头元素出队并赋值给u
        for(w = FirstAdjVex(G,u);w>=0;w = NextAdjVex(G,u,w)) // 依次找弧
        if(!visited[w]){ // w为u的尚未访问过的邻接顶点
            cout << w;
            visited[w] = true;
            EnQueue(Q,w); // w进队
        }
    }
}

DFS与BFS算法效率分析:

时间复杂度:一般情况下都为O(N+E),N为顶点数,E为边数;

空间复杂度:都为O(N),因为需要借助辅助数组来标记是否被访问过;

3.最小生成树:

普利姆算法:

普利姆算法(Prim's algorithm)是一种用于生成最小生成树的算法,它的基本思想是从一个点开始,逐步扩展生成树,每次选择与生成树相邻的最小边加入生成树中,直到所有的点都被加入生成树为止。

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

#define MAX_VERTICES 100
#define INF INT_MAX

int graph[MAX_VERTICES][MAX_VERTICES];
int visited[MAX_VERTICES];
int parent[MAX_VERTICES];
int distance[MAX_VERTICES];

int minDistance(int n) {
    int min = INF, minIndex;
    for (int i = 0; i < n; i++) {
        if (!visited[i] && distance[i] < min) {
            min = distance[i];
            minIndex = i;
        }
    }
    return minIndex;
}

void prim(int n) {
    for (int i = 0; i < n; i++) {
        visited[i] = 0;
        distance[i] = INF;
    }
    distance[0] = 0;
    parent[0] = -1;

    for (int i = 0; i < n - 1; i++) {
        int u = minDistance(n);
        visited[u] = 1;
        for (int v = 0; v < n; v++) {
            if (graph[u][v] && !visited[v] && graph[u][v] < distance[v]) {
                parent[v] = u;
                distance[v] = graph[u][v];
            }
        }
    }

    printf("Edge   Weight\n");
    for (int i = 1; i < n; i++) {
        printf("%d - %d    %d\n", parent[i], i, graph[i][parent[i]]);
    }
}

int main() {
    int n, m;
    printf("Enter the number of vertices: ");
    scanf("%d", &n);
    printf("Enter the number of edges: ");
    scanf("%d", &m);
    printf("Enter the edges and weights:\n");
    for (int i = 0; i < m; i++) {
        int u, v, w;
        scanf("%d %d %d", &u, &v, &w);
        graph[u][v] = w;
        graph[v][u] = w;
    }
    prim(n);
    return 0;
}

克鲁斯卡尔算法:

克鲁斯卡尔算法(Kruskal's algorithm)是一种用于生成最小生成树的算法,它的基本思想是先将所有边按照权重从小到大排序,然后从小到大依次加入边,如果加入一条边会形成环,则不加入,直到所有的点都被加入生成树为止。

首先定义了一个常量MAX_VERTICES表示图中最大的顶点数,一个常量MAX_EDGES表示图中最大的边数。

然后定义了一个结构体Edge表示边,包含起点、终点和权重。

接着定义了一个一维数组parent表示每个顶点的父节点,一个一维数组edges表示所有的边。

定义了一个比较函数cmp用于边的排序,按照权重从小到大排序。

定义了函数findunionSet用于并查集的实现,用于判断加入一条边是否会形成环。

最后定义了函数kruskal实现了克鲁斯卡尔算法,首先初始化parent数组,然后对所有的边按照权重排序,依次加入边并判断是否会形成环,如果不会,则将其加入生成树中,并将两个顶点合并。最后输出生成树的边和权重。

main函数中读入图的信息,调用kruskal函数生成最小生成树。

需要注意的是,这里的图是无向图,因此在边的输入中需要同时输入起点和终点。如果是有向图,则只需要输入起点和终点即可。

#include <stdio.h>
#include <stdlib.h>

#define MAX_VERTICES 100
#define MAX_EDGES 10000

struct Edge {
    int u, v, w;
};

int parent[MAX_VERTICES];
struct Edge edges[MAX_EDGES];

int cmp(const void *a, const void *b) {
    return ((struct Edge*)a)->w - ((struct Edge*)b)->w;
}

int find(int u) {
    if (parent[u] == u) {
        return u;
    }
    return parent[u] = find(parent[u]);
}

void unionSet(int u, int v) {
    parent[find(u)] = find(v);
}

void kruskal(int n, int m) {
    for (int i = 0; i < n; i++) {
        parent[i] = i;
    }
    qsort(edges, m, sizeof(struct Edge), cmp);
    printf("Edge   Weight\n");
    for (int i = 0; i < m; i++) {
        int u = edges[i].u, v = edges[i].v, w = edges[i].w;
        if (find(u) != find(v)) {
            unionSet(u, v);
            printf("%d - %d    %d\n", u, v, w);
        }
    }
}

int main() {
    int n, m;
    printf("Enter the number of vertices: ");
    scanf("%d", &n);
    printf("Enter the number of edges: ");
    scanf("%d", &m);
    printf("Enter the edges and weights:\n");
    for (int i = 0; i < m; i++) {
        scanf("%d %d %d", &edges[i].u, &edges[i].v, &edges[i].w);
    }
    kruskal(n, m);
    return 0;
}

最短路径:

迪杰斯特拉算法:

首先定义了一个常量MAX_VERTICES表示图中最大的顶点数,一个常量MAX_EDGES表示图中最大的边数。

然后定义了一个结构体Edge表示边,包含终点和权重。

定义了一个一维数组dist表示每个顶点到源点的距离,一个一维数组visited表示每个顶点是否已经被访问过,一个二维数组edges表示所有的边,一个一维数组numEdges表示每个顶点的边数。

定义了函数dijkstra实现了迪杰斯特拉算法,首先初始化distvisited数组,将源点的距离设为0,然后依次加入未确定最短路径的顶点集合中的距离最小的顶点,并更新其相邻的顶点到源点的距离。最后输出每个顶点到源点的距离。

main函数中读入图的信息,调用dijkstra函数求解最短路径。

需要注意的是,这里的图是有向图,因此在边的输入中只需要输入起点、终点和权重即可。如果是无向图,则需要将边的权重同时赋值给对称位置的元素。

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

#define MAX_VERTICES 100
#define MAX_EDGES 10000

struct Edge {
    int v, w;
};

int dist[MAX_VERTICES];
int visited[MAX_VERTICES];
struct Edge edges[MAX_EDGES][MAX_VERTICES];
int numEdges[MAX_VERTICES];

void dijkstra(int n, int s) {
    for (int i = 0; i < n; i++) {
        dist[i] = INT_MAX;
        visited[i] = 0;
    }
    dist[s] = 0;
    for (int i = 0; i < n; i++) {
        int u = -1;
        for (int j = 0; j < n; j++) {
            if (!visited[j] && (u == -1 || dist[j] < dist[u])) {
                u = j;
            }
        }
        visited[u] = 1;
        for (int j = 0; j < numEdges[u]; j++) {
            int v = edges[u][j].v, w = edges[u][j].w;
            if (dist[u] != INT_MAX && dist[u] + w < dist[v]) {
                dist[v] = dist[u] + w;
            }
        }
    }
}

int main() {
    int n, m, s;
    printf("Enter the number of vertices: ");
    scanf("%d", &n);
    printf("Enter the number of edges: ");
    scanf("%d", &m);
    printf("Enter the source vertex: ");
    scanf("%d", &s);
    printf("Enter the edges and weights:\n");
    for (int i = 0; i < m; i++) {
        int u, v, w;
        scanf("%d %d %d", &u, &v, &w);
        edges[u][numEdges[u]++] = (struct Edge){v, w};
    }
    dijkstra(n, s);
    printf("Vertex   Distance from Source\n");
    for (int i = 0; i < n; i++) {
        printf("%d        %d\n", i, dist[i]);
    }
    return 0;
}

拓扑排序:

拓扑排序是一种对有向无环图进行排序的算法,它将图中的所有顶点按照一定的顺序排列,使得对于每条有向边 (u,v),都有 u 在排列中出现在 v 的前面。

#include <stdio.h>
#include <stdlib.h>

#define MAX_VERTICES 100

int indegree[MAX_VERTICES];
int adj[MAX_VERTICES][MAX_VERTICES];
int n;

void topologicalSort() {
    int count = 0;
    int queue[MAX_VERTICES];
    for (int i = 0; i < n; i++) {
        if (indegree[i] == 0) {
            queue[count++] = i;
        }
    }
    while (count > 0) {
        int u = queue[--count];
        printf("%d ", u);
        for (int v = 0; v < n; v++) {
            if (adj[u][v]) {
                indegree[v]--;
                if (indegree[v] == 0) {
                    queue[count++] = v;
                }
            }
        }
    }
}

int main() {
    int m;
    printf("Enter the number of vertices: ");
    scanf("%d", &n);
    printf("Enter the number of edges: ");
    scanf("%d", &m);
    printf("Enter the edges:\n");
    for (int i = 0; i < m; i++) {
        int u, v;
        scanf("%d %d", &u, &v);
        adj[u][v] = 1;
        indegree[v]++;
    }
    printf("Topological order: ");
    topologicalSort();
    return 0;
}

首先定义了一个常量MAX_VERTICES表示图中最大的顶点数。

然后定义了一个一维数组indegree表示每个顶点的入度,一个二维数组adj表示图的邻接矩阵,一个整数n表示顶点的数量。

定义了函数topologicalSort实现了拓扑排序,首先将入度为0的顶点加入队列中,然后依次取出队列中的顶点,并将其相邻的顶点的入度减1,如果减1后入度为0,则将其加入队列中。最后输出排序结果。

main函数中读入图的信息,调用topologicalSort函数进行拓扑排序。需要注意的是,在输入边的时候需要将邻接矩阵中相应的元素设为1,并将终点的入度加1。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值