无穷级数
(写之前啊我先吐槽几嘴,每次要学习新的概念我就很头疼,我一看到课本上Definition那个框框我就心理不适甚至生理不适(bushi),这意味着在你本就不多的知识储备里又要塞一点东西进来,这就很容易导致猪脑过载,所以如果在第一次学的时候没有听懂,没跟新名词混个脸熟,那么以后大概率你和它已经相忘于江湖了,所以为了避免出现狗熊掰棒子这种情况,在第一次学的时候,就要用各种方法包括但不限于类比法、逻辑分析法、功能作用法等等去深入理解它,不然你就会像我现在这样大半夜在CSDN继续玩概念(bushi))
这一节的目标就是理解数列前n项和的概念并且掌握一些计算前n项和的方法。
在高中学习计算数列的前n项和时,我们有现成的等差数列和等比数列的求和公式。
当等比数列的公比q = 1时,该数列为常数列, = 。
a是等差数列首项,d是公差。
在高中的数列求和题目中,大部分求和的结果是含n的式子,这在微积分中被称为无穷和(infinite sum)(n趋于无穷),下面将会介绍部分和(partial sum)和无穷级数(infinite series)
定义
什么是无穷级数?
有一组数列{} = { , , ,. . . , }
+ + + . . . + + . . .
被称作无穷级数(简称级数),其中是数列{}的第n项。
什么是部分和数列
数列{}被定义为 = + + + . . . + = 是级数的部分和数列。可以观察到,无穷级数是没有边界的, 后面还可以一直加,但是部分和(partial sum)的n是有限的,不能无限加下去。对于级数来说,可以通过部分和的敛散性判断级数的敛散性:如果部分和数列{}收敛到极限L,那么级数也收敛并且级数的和是L;如果级数的部分和数列发散,那么级数也发散。
看到这里,问题很多的鼠鼠就要问了
几何级数(geometric series)(类似于等比数列)
几何级数的级数形式,像这样:
其中,a和r是可变的真实数字。a可以当作整个级数的系数并且a ≠ 0,r可以看成公比或者是比率并且r可以是正数也可以是负数,当然 r ≠ 0。如果r = 1,那么 = na。如果r ≠ 1,则可以用等比数列求和公式表示成这样:
其中作为部分和数列的通项公式,我们关心的敛散性。当n时,如果|r| 1,则是收敛的;如果|r| 1,则是发散的。
根据上述有关级数和部分和的讲解,部分和的极限也是级数的极限。
需要注意的是,只有当级数的n是从n = 1或者是从n = 0开始时,或
nth-Term Test(对发散级数的判断)
前面刚刚讲过,如果部分和数列{}是发散的,那么级数也是发散的。但前提是我们能判断数列{}是发散的,也就需要我们求出的式子,对于形式为等差数列和等比数列,其部分和数列的通项根据求和公式能得到,但有些部分和的通项公式是无法求出的,这就导致无法判断级数的敛散性。所以需要通过nth-Term Test来判断级数的敛散性:
需要注意的是,定理7并没有表示如果0,那么收敛。当0时,级数也有可能发散。
如果当时,发散或者≠ 0,那么部分和数列发散。进一步推导,级数也发散。通过这个定理,即使我们求不出部分和数列的通项公式,我们也能知道级数的敛散性。
组合级数
对于Sum Rule的应用,在上一篇中已经举出了特殊的例子,尽管可能是两个发散的数列相加,相加之后也可能变成收敛的。
总结
本节内容不多,主要是要分清数列{}的前n项和、无穷级数(infinite series)和部分和数列(partial sum){}之间的关系。其次,了解一个新级数——几何级数,后续还会认识P-级数、调和级数、泰勒级数和麦克劳林级数,然后,要掌握nth-Term Test,这是对无法求出部分和数列的通项公式时应用的方法。内容不多,希望大家能够真正地做到理解并应用,为后面积分测试和比较测试等内容打下基础。