Thomas-Calculus——Infinite Sequences and Series(托马斯-微积分——无穷数列和级数-无穷级数)

无穷级数

(写之前啊我先吐槽几嘴,每次要学习新的概念我就很头疼,我一看到课本上Definition那个框框我就心理不适甚至生理不适(bushi),这意味着在你本就不多的知识储备里又要塞一点东西进来,这就很容易导致猪脑过载,所以如果在第一次学的时候没有听懂,没跟新名词混个脸熟,那么以后大概率你和它已经相忘于江湖了,所以为了避免出现狗熊掰棒子这种情况,在第一次学的时候,就要用各种方法包括但不限于类比法、逻辑分析法、功能作用法等等去深入理解它,不然你就会像我现在这样大半夜在CSDN继续玩概念(bushi))

这一节的目标就是理解数列前n项和的概念并且掌握一些计算前n项和的方法

在高中学习计算数列的前n项和时,我们有现成的等差数列等比数列求和公式

等比数列求和公式(q不等于1)

 当等比数列的公比q = 1时,该数列为常数列{S_{n}}^{} = n{a_{1}}^{}

等差数列求和公式

a是等差数列首项,d是公差。

在高中的数列求和题目中,大部分求和的结果是含n的式子,这在微积分中被称为无穷和(infinite sum)(n趋于无穷),下面将会介绍部分和(partial sum)无穷级数(infinite series)

定义

什么是无穷级数?

有一组数列{{a_{n}}^{}} = { {a_{1}}^{} ,{a_{2}}^{} ,{a_{3}}^{} ,. . . ,{a_{n}}^{} } 

 {a_{1}}^{} + {a_{2}}^{} + {a_{3}}^{} + . . . + {a_{n}}^{} + . . . 

被称作无穷级数(简称级数),其中{a_{n}}^{}是数列{{a_{n}}^{}}的第n项。

什么是部分和数列

数列{{S_{n}}^{}}被定义为{S_{n}}^{} = {a_{1}}^{} + {a_{2}}^{} + {a_{3}}^{} + . . . + {a_{n}}^{} = \sum_{k=1}^{n}{a_{n}}^{}是级数的部分和数列。可以观察到,无穷级数是没有边界的,{a_{n}}^{} 后面还可以一直加,但是部分和(partial sum)的n是有限的,不能无限加下去。对于级数来说,可以通过部分和的敛散性判断级数的敛散性:如果部分和数列{{S_{n}}^{}}收敛到极限L,那么级数也收敛并且级数的和是L;如果级数的部分和数列发散,那么级数也发散。

看到这里,问题很多的鼠鼠就要问了

1、这个部分和是什么?
2、怎么长得跟我高中学得数列{{a_{n}}^{}}的前n项的式子一样?
首先,级数在形式上是无穷多项相加求和,但实际上这是不可能实现的。因为项数无穷多,所以无法一一相加实现,如果要研究级数的性质就必须要引入部分和数列。因为部分和数列的项数是有限的,所以可以从 n = 1 ,n = 2 ,. . .  ,n \rightarrow \propto慢慢相加观察部分和数列的变化趋势,通过观察变化趋势,来研究部分和数列是否有极限,也就是判断无穷级数是否收敛有极限。
其次,部分和数列是一组数列,部分和数列的各项随着下标n的增加,相加的项数会越来越多,像这样:

所以,要研究部分和数列的敛散性就需要上一节的知识点,部分和数列和中学所学的数列的前n项最大的不同就是 部分和数列的n是有限的

几何级数(geometric series)(类似于等比数列)

几何级数的级数形式,像这样:

其中,a和r是可变的真实数字。a可以当作整个级数的系数并且a ≠ 0,r可以看成公比或者是比率并且r可以是正数也可以是负数,当然 r ≠ 0。如果r = 1,那么{S_{n}}^{} = na。如果r ≠ 1,则{S_{n}}^{}可以用等比数列求和公式表示成这样:

其中{S_{n}}^{}作为部分和数列的通项公式,我们关心{S_{n}}^{}的敛散性。当n\rightarrow \propto时,如果|r| < 1,则{S_{n}}^{}是收敛的;如果|r| > 1,则{S_{n}}^{}是发散的。

根据上述有关级数和部分和的讲解,部分和的极限也是级数的极限。

需要注意的是,只有当级数的n是从n = 1或者是从n = 0开始时,\sum_{n = 1}^{\propto } ar^{n-1} = \frac{a}{1 - r}\sum_{n = 0}^{\propto } ar^{n} = \frac{a}{1-r}

nth-Term Test(对发散级数的判断)

前面刚刚讲过,如果部分和数列{{S_{n}}^{}}是发散的,那么级数也是发散的。但前提是我们能判断数列{{S_{n}}^{}}是发散的,也就需要我们求出{S_{n}}^{}的式子,对于形式为等差数列和等比数列,其部分和数列的通项根据求和公式能得到,但有些部分和的通项公式是无法求出的,这就导致无法判断级数的敛散性。所以需要通过nth-Term Test来判断级数的敛散性:

需要注意的是,定理7并没有表示如果{a_{n}}^{}\rightarrow0,那么\sum_{n=1}^{\propto } {a_{n}}^{}收敛。当{a_{n}}^{}\rightarrow0时,级数也有可能发散。

 如果当n\rightarrow \propto时,{a_{n}}^{}发散或者{a_{n}}^{}0,那么部分和数列发散。进一步推导,级数也发散。通过这个定理,即使我们求不出部分和数列的通项公式,我们也能知道级数的敛散性。

组合级数

 对于Sum Rule的应用,在上一篇中已经举出了特殊的例子,尽管可能是两个发散的数列相加,相加之后也可能变成收敛的。

总结

 本节内容不多,主要是要分清数列{{a_{n}}^{}}的前n项和、无穷级数(infinite series)和部分和数列(partial sum){{S_{n}}^{}}之间的关系。其次,了解一个新级数——几何级数,后续还会认识P-级数、调和级数、泰勒级数和麦克劳林级数,然后,要掌握nth-Term Test,这是对无法求出部分和数列的通项公式时应用的方法。内容不多,希望大家能够真正地做到理解并应用,为后面积分测试和比较测试等内容打下基础。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不爱敲代码的数学分子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值